
Towards an Autonomic Computing Testbed

Aydan Yumerefendi, Piyush Shivam, David Irwin, Pradeep Gunda
Laura Grit, Azbayar Demberel, Jeff Chase, and Shivnath Babu

Duke University
{aydan,shivam,irwin,pradeep,grit,asic,chase,shivnath}@cs.duke.edu

Abstract

This paper introduces Automat, a testbed architecture
and prototype for research in autonomic services and
hosting centers. Automat is an interactive web-based
laboratory in which users allocate resources from an on-
demand server cluster to experiment with controller poli-
cies for sense-and-respond monitoring and adaptation by
hosted services and, crucially, by the hosting center it-
self. Users may explore the interactions of components
selected from a menu of applications, workloads, fault-
loads, and controllers, or install their own components.
Components may include view extensions as plugins to a
Web portal interface, enabling users to monitor and in-
teract with controllers during an experiment.

1 Introduction

Attendees at the 2006 ICAC conference agreed that
development of common testbeds and test scenarios is a
key step to accelerating progress in autonomic comput-
ing research. Although no testbed can serve the needs
of all researchers, there is an opportunity for new soft-
ware to address many common needs and to facilitate
development and evaluation of new services and self-
management algorithms.

This paper introduces Automat1, a community testbed
architecture targeted for research into mechanisms and
policies for autonomic hosting centers that configure,
monitor, optimize, diagnose, and repair themselves un-
der closed-loop control. The Automat project seeks to
enable researchers to define services and control policies
at various levels of a computing service utility. Testbed
users may install and launch their own application ser-
vices or environments (guests) and specifyguest con-
troller modules that drive provisioning, adaptation, and

1An Automat is an automated vending facility introduced in the
1930s, in which clients select from menus of precooked itemsand com-
pose them to form a meal. In this case, the “meal” is a reproducible
experiment drawn from a menu of packaged test scenarios and dynamic
controllers instantiated on demand in a virtual data center.

repair for guests under their control. Users exploring
self-management at the hosting center level can instan-
tiate virtual data centers comprising subsets of the cen-
ter’s hardware, and define controllers that govern re-
source arbitration, resource selection, and dynamic mi-
gration within their VDCs.

Automat strives to improve researcher productivity by
enabling researchers to focus on the novel aspects of their
work, rather than on the infrastructure needed to realize
their objectives. Our premise is that a standard “harness”
to package and share test applications, workloads, fault-
loads, and system prototypes—and deploy them at the
push of a button—will catalyze the growth of a reposi-
tory of shared test cases and approaches within the com-
munity. A successful testbed can enable repeatable exper-
iments, provide a common means to measure progress to-
ward shared goals, facilitate sharing of research outputs,
and establish paths for technology transfer.

2 Overview
Advances in virtualization of hosts and other data cen-

ter components (network elements and storage) continue
to extend the mechanisms for controlled resource man-
agement and dynamic adaptation. For example, Au-
tomat leverages virtual machine (VM) technology, which
offers powerful mechanisms to manage shared clusters.
The leading VM systems support live migration, check-
point/restart, and fine-grained allocation of server re-
sources as a measured and metered quantity (e.g., Xen [2,
5], VMware [10]).

These capabilities create a rich policy space for adap-
tive hosting centers and guest applications. Automat is an
open framework to facilitate experimental exploration of
this space, and other aspects of dynamic “orchestration”
for autonomic services and hosting centers. More gen-
erally, it defines essential elements of an architecture for
programmable hosting centers.

Figure 1 depicts the components of an Automat
testbed on a hosting center comprising physical re-
sources. A Web portal enables users to install soft-
ware components, launch and manage experiments, and

Figure 1: Automat is an open testbed architecture for adaptive services and autonomic hosting centers. Users access thesystem
through a Web portal to launch experiments on a shared cluster. Users can install and instantiate guest applications or adaptive
middleware services, workloads, andcontroller modules that govern various sense-and-respond policies for self-management and
self-repair, including guest adaptation and resource arbitration. A common instrumentation plane supports publish/subscribe of
metric streams to drive controller policies. The infrastructure may be partitioned into multiplevirtual data centers (VDC) managed
by site controllers for isolated experiments that require direct control over hardware.

maintain and share libraries of test scenarios and compo-
nents. This basic structure is similar to other testbeds for
systems research, e.g., PlanetLab [3] and Emulab [11].
The novel feature of Automat is foundational support for
pluggable user-suppliedcontrollers that manage dynamic
adaptation, dynamic resource management, and/or diag-
nosis and repair. Automat exposes and virtualizes the un-
derlying control points to serve these needs, while en-
abling users of the testbed to control key aspects of pol-
icy through common event interfaces and APIs. Table 1
summarizes the user-supplied or replaceable components
in Automat.

Controllers incorporate policies and configuration ac-
tions to meet desired objectives under changing condi-
tions. Controllers are specified as Java classes that use
various support interfaces in the testbed. Users instantiate
and link controllers through the Web portal. Each con-
troller instance is driven by a clocking signal and other
event notifications, and is endowed with specific pow-
ers for some period of time, e.g., access to control points
for some hosted guest, power to control allocation within
some share of testbed resources, or direct control over a
partition of the hosting infrastructure. Controllers may
subscribe to instrumentation streams published by the in-
frastructure elements or the guest applications and oper-
ating systems. These data streams act as a feedback sig-
nal to drive the control policies.

Some of the possible areas of autonomic computing
research enabled by Automat are listed below.

Provisioning and adaptation in self-optimizing sys-
tems: Automat provides a platform for experiments
with automated resource allocation to meet higher-level
objectives (e.g., QoS levels) under dynamic workloads
(e.g., [1, 8]). The general approach follows theMAPE
loop: collect data throughmonitoring, build models of
system behavior byanalyzing this data, use the learned
models toplan how desired objectives can be met, and
execute the actions chosen.

Understanding complex systems: Automat provides
context to explore the stability and robustness of network
services under automated control, complex interactions
and emergent behavior of dynamic control policies act-
ing on behalf of various stakeholders in the system, and
analysis of instrumentation data to infer system models.
Examples include the use of statistical learning to iden-
tify metrics correlated with constraint violations and fail-
ures (e.g., [6]), and techniques for answering high-level
queries automatically (e.g., [9]).
Self-configuring and self-healing systems:Automat
supports research into automated fault attribution, which
is a key step toward self-repair (e.g., [4]). The testbed
can also be used to explore how system components
can self-configure and integrate themselves automatically
into a running system (e.g., [12]), which is integral to Au-
tomat’s design.
Placement, migration, and data center management:
User-supplied site controllers enable experimentation
with policies to assign workload to specific physical
hosts, e.g., for energy management or hotspot reduction.
In principle, site controllers could also introduce fault in-
jection for low-level resources.

3 Automat Components
This section describes the main elements of Automat’s

architecture: exposing infrastructure and guest control
points, providing the means to define and install con-
trollers that can access exposed actuators, and offering
a common collection of tools for testing and monitoring
the behavior of controllers.

Automat extends a resource control substrate called
Shirako developed in our earlier research [7]. The Shi-
rako core is a Java toolkit for buildingresource leasing
services. The prototype includes plugin modules to lease
computing resources from shared clusters, and to config-
ure and instantiate OS images and services on physical
servers and Xen virtual machines.

A lease is a contract granting the holder rights to ex-

2

Component Description

Guest Packaged application software suitable for hosting on the testbed.Example: a network applica-
tion service, workload generator, or faultload.

Guest controller Drives resource provisioning, configuration, monitoring,fault attribution, and/or self-repair for
some guest instance under its control.Example: feedback-driven control to provision a Web
service to meet service targets under changing workload. A separate guest controller may drive
a workload or faultload on a test service.

Resource controller Arbitrates resource requests from multiple guest controllers contending for a pool of typed
abstract resources.Example: allocate resources to hosted applications to optimize a global
objective such as overall utility.

Site controller Exercises direct control over physical resources in avirtual data center (VDC), delegating arbi-
tration powers to one or more resource controllers.Example: assign best-effort virtual machines
to specific physical servers, and migrate them reactively toeliminate hotspots.

View A Web portal plugin that defines a graphical Web interface associated with a controller module,
including real-time display of metric streams. Views may provide controls to interact with the
controller, observe its status, or change its behavior.

Table 1: Summary of user-supplied or replaceable components. Automat facilitates experiments with control policies at all levels
of the hosting center and applications, and their interactions.

clusive control over some quantity of a resource over a
specific period of time. Leases are dynamic and renew-
able by mutual consent between the resource provider
and guest. The leasing abstraction applies to any set of
computing resources that is “virtualized” in the sense that
it is partitionable as a measured quantity.

Each guest runs within a virtual execution context on
leased resources. The resources assigned to each guest
are determined by the interaction of the user-selected
controller modules, which incorporate policies for guest
adaptation, resource arbitration, and resource configura-
tion. Table 1 outlines the types of controller modules in
the Automat architecture.

The Automat prototype defines a common framework
for developing, installing, upgrading, and composing
controllers written in Java. Controllers are driven by a
clocking signal and may use Automat-provided classes
for calendar scheduling, resource allocation, processing
of instrumentation streams, and common heuristics for
optimization and placement. In addition, each controller
registers to receive upcalls as new resources join or leave
its domain, and to notify it of changes in resource status.

3.1 Controlling the Infrastructure

The infrastructure exports control points to create
and destroy virtual machines (VMs), assign network ad-
dresses and physical resource shares to VMs, migrate
VMs, and control the functioning of the underlying phys-
ical resources, e.g., to image, boot, configure, and power-
cycle physical servers, and other elements such as storage
and network elements, if applicable.

Site controllers have direct access to the control points
for some set of physical elements assigned to Virtual
Data Centers (VDC) from the underlying hosting cen-
ter. To enable more flexible user control over resource
management policy, they export limited power over re-

source provisioning and resource arbitration to resource
controllers. Each resource controller is delegated con-
trol over a resource inventory and draws on this inven-
tory to satisfy requests from guests and guest controllers.
Multiple resource controllers may be active on behalf of
different users or groups, concurrently controlling differ-
ent shares of the resources in the testbed. In this way,
control over resources diffuses dynamically and hierar-
chically through the network of active controllers.

The resource controllers exercise control over provi-
sioning and migration for abstract resources, indepen-
dent of how they are materialized within each site (VDC).
Site controllers decide how to map requests provisioned
by resource controllers to the underlying physical re-
sources. Automat researchers may experiment with site
controller policies to determine virtual machine place-
ment, such as a virtual machine migration policy to deter-
mine where and when to move virtual machines on phys-
ical resources [5]. Sites may use a migration policy for
node maintenance and failures, and thermal and energy
management.

3.2 Controlling Guests

Adaptive application environments and workload
generators—guests—must also expose control points to
user-supplied controllers. Automat defines a standard
means for guests to expose their own control points to
guest controllers that manage their configuration, adapta-
tion, and repair. An important goal is to enable separate
development of the guest controllers, and even of generic
controllers that manage whole classes of guests. Thus
Automat also defines a common set of instrumentation
and control interfaces for guest components.

Drivers. In addition to the resource leasing APIs, Au-
tomat provides basic support for dynamically installable
and upgradeableguest drivers to enable dynamic control
of guests. A guest driver defines a set of control actions

3

Figure 2: Each guest controller obtains resources for a guest service, invokes the guest driver to install the service, and monitors
the service status and performance. A controller can subscribe to instrumentation data and use instrumentation metrics to adjust
the resources allocated to the guest. Multiple controllersmay share a common naming scope. Controllers in the same scope may
interact: for example, a workload controller can subject a guest service to some workload and publish streams of performance
metrics that guide another controller to adapt the service.

on a guest instance (e.g., a virtual machine running the
guest software). A guest driver exports standard actions
to instantiate and configure the guest, probe its status,
and also to attach and detach managed resources (servers,
storage) to and from the service, and to notify it of VM
resizing or migration. The testbed binds controllers to
their guest instances securely, so that only a properly au-
thorized guest controller can issue control operations on
a guest. Figure 2 depicts guest controllers and drivers for
an application service and an associated workload gener-
ator.

Workloads and faultloads. Automat simplifies pack-
aging and deployment of workloads and faultloads. The
system treats these classes of applications as guest ser-
vices: each defines a driver and a controller. Users in-
stantiate workloads and faultloads using the web portal.
Performance and availability metrics computed by a gen-
erator can be exported to customized views accessible
through the portal. Workload generators may export con-
trol interfaces to modulate the load signal via their guest
drivers. Similarly, faultloads can offer the means to inject
faults in specific components of an application.

Emulation. Automat provides a means to run con-
trollers in emulation mode on an emulated data cen-
ter. Guests active in an emulation must providenull
drivers and a module to generate synthetic instrumenta-
tion streams for the controllers to subscribe to and ob-
serve, based on expected behavior under the configured
workload and the resource set assigned to it by the con-
troller. These modules “short-circuit” the gathering of
instrumentation data from a running guest (Figure 2). All
other components run unchanged.

3.3 Web Portal

Automat’s extensible web portal allows users to inter-
act with the system. Using the web portal a user can in-

stall guest packages (hosted applications, workloads, and
faultloads) and their drivers and controllers. To launch a
guest, a user instantiates a controller for the guest, links
it to an active resource controller, and activates it.

Users can also request powers to define the resource
management functions for portions of the hosting center
for periods of time. If granted, these functions are embod-
ied in user-selected resource controllers and VDCs with
user-selected site controllers.

An Automat center operator also uses the Web portal
to monitor the testbed and its users, manage the default
site controller and resource controller, and move hard-
ware components in and out of service.

Automat portal users can extend the user interface to
interact with their guests and controllers. Each user-
supplied controller defines an optionalview as a Web por-
tal plugin (Figure 3). View plug-ins may include server-
side templates or applets. For example, the guest con-
troller plug-ins can implement a graphical interface to set
attributes or parameters for the guest, e.g., to modulate
a workload generator or switch among alternative provi-
sioning policies.

4 Example
As an example, we briefly outline a Rubis experiment

on our initial Automat prototype. Rubis is a popular Web
application that implements the core functionality of an
auction website. We built a a guest controller for Ru-
bis that leases virtual machines from a VDC, instantiates
the Rubis service, subscribes to the service’s performance
metrics, and uses feedback control to adapt the server re-
sources bound to the service under varying load. The
workload is driven by another guest controller that pro-
visions, launches, and controls a workload generator for
Rubis. These controllers interact to sequence the experi-
ment.

4

Figure 3: Rubis guest controller view.

To deploy Rubis on Automat, we created two
packages—one for the Rubis service and one for the
workload generator—and deployed them as guests on the
Automat prototype. The Rubis guest package contains:
(1) the Rubis archive, a JBoss application server, and
MySQL; (2) scripts and configuration files to install and
manage the service; (3) a guest driver for the Rubis ser-
vice which implements control actions (e.g., install, start,
stop) associated with code which typically invoke scripts
bundled into the service package. The workload genera-
tor is packaged similarly.

We deploy the guest controllers for Rubis and its
workload in the same scope so that the workload guest
controller can obtain the IP addresses of virtual server
running the Rubis web tier. The guest controller deploys
the service, then controls the CPU allocation of the ap-
plication server dynamically based on moving averages
of request latency published by the workload generator
through a Ganglia instrumentation layer. Figure 3 shows
a screenshot of the view for this controller, displaying the
status of the server allocated to this guest, metrics sub-
scribed to by the controller, and control actions that can
be taken on the guest. Figure 4 shows the resulting client
latency with and without the controller.

5 Summary

Automat is an architecture for a common testbed for
self-managing hosting centers and autonomic services.
Automat users can install dynamic controllers governing
various management functions, drawing on sensors and
actuators exposed by the testbed. It is a first step toward
an exportable community-wide software tool to lower the
barriers to entry for research and education in autonomic
computing. Automat is a work in progress: we have
constructed a proof-of-concept prototype as a controller
toolkit and Web portal using the Shirako resource control
plane, with core extensions for Virtual Data Centers.

Acknowledgment. This research is supported by the Na-
tional Science Foundation through ANI-0330658 and CNS-
0509408, and by IBM, HP Labs, and Network Appliance. Laura
Grit is a National Physical Science Consortium Fellow.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

C
P

U
 s

ha
re

 (
%

)

C
lie

nt
 la

te
nc

y
(m

s)

Time (seconds)

latency (without controller)
latency (with controller)

cpu share

Figure 4: Rubis client latency with and without controller adap-
tation. For the same workload, a simple controller manages to
reduce client latency by changing the amount of CPU cycles
bound to the Rubis virtual machine. The controller performs
its functions by subscribing to an instrumentation stream and
interacting with the control plane.

References
[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance

Guarantees for Web Server End-Systems: A Control-
Theoretical Approach.IEEE TPDS, 13(1), January 2002.

[2] P. Barham, B. Dragovic, K. Faser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the Art of Virtualization. InSOSP, October 2003.

[3] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and M. Wawr-
zoniak. Operating System Support for Planetary-Scale
Network Services. InNSDI, March 2004.

[4] G. Candea, E. Kiciman, S. Kawamoto, and A. Fox. Au-
tonomous Recovery in Componentized Internet Applica-
tions. Cluster Computing, 9(1), February 2006.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration of
Virtual Machines. InNSDI, May 2005.

[6] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and
J. Chase. Correlating Instrumentation to System States:
A Building Block for Automated Diagnosis and Control.
In OSDI, December 2004.

[7] D. Irwin, J. S. Chase, L. Grit, A. Yumerefendi, D. Becker,
and K. G. Yocum. Sharing Networked Resources with
Brokered Leases. InUSENIX, June 2006.

[8] P. Pradala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Sing-
hal, A. Merchant, and K. Salem. Adaptive Control of Vir-
tualized Resources in Utility Computing Environments. In
EuroSys, March 2007.

[9] E. Thereska, M. Abd-El-Malek, J. J. Wylie, D. Narayanan,
and G. R. Ganger. Informed Data Distribution Selection in
a Self-Predicting Storage System. InICAC, June 2006.

[10] C. A. Waldspurger. Memory Resource Management in
VMware ESX Server. InOSDI, December 2002.

[11] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An Inte-
grated Experimental Environment for Distributed Systems
and Networks. InOSDI, December 2002.

[12] J. Wildstrom, P. Stone, E. Witchel, R. J. Mooney, and
M. Dahlin. Towards Self-Configuring Hardware for Dis-
tributed Computer Systems. InICAC, June 2005.

5

