
Towards Automatic Optimization of MapReduce Programs

Shivnath Babu
∗

Duke University
Durham, North Carolina, USA

shivnath@cs.duke.edu

ABSTRACT

Timely and cost-effective processing of large datasets has become
a critical ingredient for the success of many academic, govern-
ment, and industrial organizations. The combination of MapRe-
duce frameworks and cloud computing is an attractive proposition
for these organizations. However, even to run a single program
in a MapReduce framework, a number of tuning parameters have
to be set by users or system administrators. Users often run into
performance problems because they don’t know how to set these
parameters, or because they don’t even know that these parame-
ters exist. With MapReduce being a relatively new technology, it
is not easy to find qualified administrators. In this position paper,
we make a case for techniques to automate the setting of tuning
parameters for MapReduce programs. The objective is to provide
good out-of-the-box performance for ad hoc MapReduce programs
run on large datasets. This feature can go a long way towards im-
proving the productivity of users who lack the skills to optimize
programs themselves due to lack of familiarity with MapReduce or
with the data being processed.

Categories and Subject Descriptors: K.6.4 [Management of Com-
puting and Information Systems]: System Management

General Terms: Experimentation, Performance

Keywords: MapReduce, Hadoop, Cost-based Optimization

1. INTRODUCTION
We are in the “big data” era. Many enterprises continuously col-

lect large datasets that record customer interactions, product sales,
results from advertising campaigns on the Web, and other types of
information. Facebook collects 15 TeraBytes of data each day into
its PetaByte-scale data warehouse [17]. Powerful telescopes in as-
tronomy, particle accelerators in physics, and genome sequencers
in biology are putting massive volumes of data into the hands of
scientists. The ability to perform scalable and timely analytical
processing of these datasets to extract useful information is now a
critical ingredient for success. For example, a number of products

∗Supported by NSF grants IIS 0644106 and IIS 0917062

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCC’10, June 10–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0036-0/10/06 ...$10.00.

// The map function defined in a class named Map

public void map(LongWritable key, Text value,

OutputCollector<Text, DoubleWritable> output) {

// We need to parse the input line of text

// to extract the product & sales information

StringTokenizer tok =

new StringTokenizer(value.toString(), "|");

Text product = new Text();

product.set(tok.nextToken());

DoubleWritable sales = new DoubleWritable();

sales.set(Double.parseDouble(tok.nextToken()));

// Output extracted product & sales information

// to be processed by the reduce function

output.collect(product, sales);

}

public static void main(String[] args) {

JobConf conf = new JobConf();

// Set some parameters explicitly

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(DoubleWritable.class);

conf.setMapperClass(Map.class);

conf.setReducerClass(Reduce.class);

conf.setNumReduceTasks(10);

// Submit the job for execution

JobClient.runJob(conf);

}

Figure 1: Example (edited) MapReduce program in Hadoop

that appear on the Facebook site are based on large-scale data anal-
ysis. Ad hoc analysis and business-intelligence applications are
used by data analysts throughout Facebook [17].

Cost-effective processing of large datasets is a nontrivial under-
taking. Fortunately, MapReduce frameworks and cloud computing
have made it easier than ever for academic, government, and in-
dustrial organizations to step into the world of big data. MapRe-
duce frameworks, introduced in [6], provide a programming model
and run-time system that are amenable to a variety of real-world
tasks. For programs written in this model, the run-time system au-
tomatically parallelizes the processing across large-scale clusters of
machines, handles machine failures, and schedules inter-machine
communication to make efficient use of the network and storage.

Hadoop [8] is an implementation of a MapReduce framework
that follows the design laid out in the original paper. A number
of enterprises use Hadoop in production deployments for applica-
tions such as Web indexing, data mining, report generation, log
file analysis, financial analysis, scientific simulation, and bioinfor-
matics research. MapReduce frameworks are well suited to run on
cloud computing platforms. Cloud-based services are now avail-
able that make it easy to set up and run MapReduce programs us-
ing Hadoop. Amazon Elastic MapReduce is a hosted MapReduce
framework that runs dynamically-provisioned Hadoop clusters us-
ing Amazon Elastic Compute Cloud (EC2) and Simple Storage Ser-
vice (S3).

Parameter Name Brief Description and Use Default Value Values Considered

mapred.reduce.tasks Number of reducer tasks 1 [5,300]
io.sort.mb Size in MegaBytes of map-side buffer for sorting key/value pairs 100 [100,200]

io.sort.record.percent Fraction of io.sort.mb dedicated to metadata storage 0.05 [0.05,0.15]

io.sort.factor Number of sorted streams to merge at once during sorting 10 [10,500]

io.file.buffer.size Buffer size used to read/write (intermediate) sequence files 4K 32K

mapred.child.java.opts Java control options for all mapper and reducer tasks -Xmx200m -Xmx[200m,300m]

mapred.job.shuffle.input.buffer.percent % of reducer task’s heap used to buffer map outputs during shuffle 0.7 0.7,0.8

mapred.job.shuffle.merge.percent Usage threshold of mapred.job.shuffle.input.buffer.percent to trigger 0.66 0.66,0.8
reduce-side merge in parallel with the copying of map outputs

mapred.inmem.merge.threshold Another reduce-side trigger for in-memory merging; off when 0 1000 0

mapred.job.reduce.input.buffer.percent % of reducer task’s heap to buffer map outputs while applying reduce 0 0,0.8

dfs.replication Block replication factor in Hadoop’s HDFS filesystem 3 2

dfs.block.size HDFS block size (data size processed per mapper task in our setting) 64MB 128MB

Table 1: A subset of job configuration parameters in Hadoop ([a, b] indicates the range of values from a to b)

Running a MapReduce Program: A task is expressed in the
MapReduce programming model through a map function and a re-

duce function. As an illustration, Figure 1 shows the map function
from an example MapReduce program written to run in Hadoop.1

This program groups the records in a large input text file by product
name, and computes the total sum of sales per product. The map
function shown in Figure 1 parses each line of text in the input to
extract the corresponding product and sales information.

To run the program as a job in Hadoop, a job configuration object
is created; and the parameters of the job are specified. The example
Java main function in Figure 1 specifies values for the following
parameters explicitly: (i) the respective classes implementing the
map and reduce functions, (ii) the data types of the key and value
output by the map function (the complete map output is grouped on
the key and input to the reduce function), and (iii) the number of
distinct reducer tasks to use to process the reduce function.

Apart from the job configuration parameters whose values are
specified explicitly like in Figure 1, there are a large number of
other parameters whose values have to be specified before the job
can be run in a MapReduce framework like Hadoop. The set-
tings of these parameters control various aspects of job behavior
during execution such as memory allocation and usage, concur-
rency, I/O optimization, and network bandwidth usage. The sub-
mitter of a Hadoop job has the option to set these parameters either
using a program-level interface like in Figure 1 or through XML
configuration files. Higher-level languages for MapReduce frame-
works like HiveQL and Pig have developed their own hinting syn-
tax for parameter specification. For any parameter whose value
is not specified explicitly during job submission, default values—
either shipped along with the system or specified by the system
administrator—are used.

More than 190 parameters are specified to control the behavior
of a MapReduce job in Hadoop. As a conservative estimate, the
settings of more than 25 of these parameters can have significant
impact on job performance. (We will provide empirical evidence in
Section 2.) A fairly large subset of these parameters display strong
performance interactions with one or more other parameters. An
interaction exists between parameters p1 and p2 when the magni-
tude of impact that varying p1 has on job performance depends on
the specific setting of p2. Stated otherwise, the performance impact
of varying p1 is different across different settings of p2.

Hadoop developers may well be repeating a mistake that rela-
tional database developers made in the past, which is one of the
reasons why database systems have gained notoriety as systems
that are hard to manage. When they were developed originally, re-
lational database systems had a small fraction of the features found

1Some edits have been made for simplicity while retaining aspects
needed for illustrative purposes in the paper.

in commercial databases today. With the addition of more and more
new features at a fast pace, database system developers followed a
“tuning-knob-for-everything” philosophy [5]. Consequently, over
time, relational database systems became bloated with features;
many of them unnecessary for a vast majority of users. What was
worse was that setting the tuning knobs became a nightmare for
most users. In addition, the learning curve for new users became
increasingly steep over time. Highly paid database administrators
became essential to manage these systems. Browsing through the
Hadoop, Hive, and Pig mailing lists reveals that users often run into
performance problems caused by lack of knowledge of the config-
uration parameters. With MapReduce being a relatively new tech-
nology, it is not easy to find qualified administrators.

In this position paper, we make a case for techniques to auto-
mate the setting of job configuration parameters for MapReduce
programs in general; focusing in particular on Hadoop. The ob-
jective is to provide good out-of-the-box performance for ad hoc
MapReduce programs run on large datasets. This feature can go a
long way towards improving the productivity of MapReduce users
who lack the skills to optimize programs themselves due to lack of
familiarity with MapReduce or with the data being processed.

Roadmap: The roadmap for the rest of the paper is as follows:
• Section 2 discusses job configuration parameters in Hadoop. It

also presents empirical evidence of the performance impact and
interactions of some of the parameters in order to motivate the
need for automated techniques for setting parameters.

• Section 3 gives a concrete definition of the problem and dis-
cusses various solution approaches.

• Section 4 attempts to lay out a research agenda.

2. IMPACT OF MAPREDUCE JOB CONFIG-

URATION PARAMETERS IN HADOOP
We begin by presenting some empirical evidence to demonstrate

differences in job running times between good and bad parameter
settings in Hadoop. The purpose is to illustrate trends rather than
to present a comprehensive performance study. We used a Hadoop
cluster running on 17 nodes, with 1 master and 16 worker nodes.
Each node has a dual core 2GHz AMD processor, 1.8GB RAM,
30 GB of local space, and runs Linux in a Xen virtual machine.
Each worker node was set to run at most 4 mapper tasks and 2
reducer tasks concurrently. Thus, the cluster can run at most 64
mapper tasks in a concurrent map wave, and at most 32 reducer
tasks in a concurrent reduce wave. Table 1 lists the subset of job
configuration parameters that we considered in our experiments.

The MapReduce program that we consider is TeraSort which
was used on one of Yahoo!’s Hadoop clusters to win the TeraByte
sort benchmark in 2008. Figures 2(a) and 3(a) show two response
surfaces that were generated by measuring TeraSort’s end-to-end

0
200

400
600

0

100

200

300
70

80

90

100

110

io.sort.factor

75GB TeraSort in Hadoop

mapred.reduce.tasks

R
u

n
n

in
g

 t
im

e
(m

in
u

te
s)

75

80

85

90

95

100

105

 60

 70

 80

 90

 100

 110

 120

 130

 0 50 100 150 200 250 300

 R
un

ni
ng

 T
im

e
(m

in
ut

es
)

 mapred.reduce.tasks

Figure 2: (a) 2D response surface of the TeraSort MapReduce program in Hadoop over a 75GB dataset, with mapred.reduce.tasks

∈ [15, 300] and io.sort.factor ∈ [10, 500]; (b) a 1D projection of the surface for io.sort.factor=500 for mapred.reduce.tasks ∈ [5, 300]

0
200

400
600

0

10

20

30
40

60

80

100

120

io.sort.factor

50GB TeraSort in Hadoop

mapred.reduce.tasks

R
u

n
n

in
g

 t
im

e
(m

in
u

te
s)

55

60

65

70

75

80

85

90

95

100

 40

 50

 60

 70

 80

 90

 100

 110

 0 50 100 150 200 250 300

 R
un

ni
ng

 T
im

e
(m

in
ut

es
)

 mapred.reduce.tasks

 io.sort.factor = 10
 io.sort.factor = 50
 io.sort.factor = 500

Figure 3: (a) 2D response surface of the TeraSort MapReduce program in Hadoop over a 50GB dataset, with mapred.reduce.tasks

∈ [8, 28] and io.sort.factor ∈ [10, 500]; (b) 1D projections of the surface for different io.sort.factor for mapred.reduce.tasks ∈ [8, 300]

running time on our cluster for two different datasets (75GB and
50GB) generated using the TeraGen program that comes with the
TeraSort package. The two parameters, mapred.reduce.tasks and
io.sort.factor, are varied in these figures while all other job config-
uration parameters are kept constant.

Effect of Parallelism: The companion Figures 2(b) and 3(b) are
projections of the respective response surfaces on to a single dimen-
sion (namely, mapred.reduce.tasks) to illustrate the predominant
trend as the number of reducer tasks used to process the job is in-
creased. Note that these figures show both improvements and drops
in performance, with some interesting relationships between the
two. The improvements come because of the increase in effective
concurrency by utilizing more of the reduce slots in the cluster—
recall that our cluster has 32 reducer slots across 16 worker nodes—
as well as by having each reducer task process less data (which in
turn can reduce I/O in nonlinear ways)—because the overall data
size processed is fixed. The drops come because of the bound on
effective concurrency per wave as well as task setup overheads.

Interactions among Parameters: A number of instances of inter-
parameter interactions were seen in our experiments. For example,
note from Figure 3(b) that changing io.sort.factor has significant
impact on performance at lower values of mapred.reduce.tasks, but
zero impact for mapred.reduce.tasks = 300.

Table 2 and Figure 4 provide more instances of inter-parameter
interactions.2 The settings of three parameters are varied in this
case. Compared to Figures 2 and 3, the values of the mapred.job.*
parameters (from Table 1) were all increased to 0.8 from their re-
spective defaults, io.sort.mb was set to 200, mapred.child.java.opts
to -Xmx300m, and mapred.inmem.merge.threshold to 0. Some in-
teresting observations can be made from Table 2 and Figure 4:
• The (relatively obscure) io.sort.record.percent parameter has sig-

nificant impact on performance. Furthermore, the impact comes
over a variation of less than 5% in the parameter’s value.

• Across different values of mapred.reduce.tasks, the pattern of
change in performance as io.sort.record.percent is varied re-
mains the same, but the magnitude of change differs.

• Performance for 10 reduce tasks is better than that for 28 reduce
tasks. One of the main rules of thumb for improving the perfor-
mance of Hadoop jobs recommends setting mapred.reduce.tasks
to 28 for this scenario; which is highly suboptimal. (28 is
around 0.9 times the total number of reduce slots in the cluster;
the intuition is that effective concurrency is maximized while
leaving some slots free for rerunning failed or slow tasks.)

Implications for Shared Clusters: As a follow up to the previous

2Row 10 in Table 2 shows the best performance achieved for 50GB
TeraSort on our relatively ill-provisioned Hadoop cluster.

Row# mapred. io.sort. io.sort.record. Job Running Time
reduce.tasks factor percent

1 10 10 0.10 1hr, 25mins, 25sec

2 10 10 0.15 1hr, 14mins, 54sec

3 10 500 0.10 1hr, 7mins, 11sec

4 10 500 0.15 1hr, 1mins, 1sec

5 28 10 0.10 1hr, 22mins, 54sec

6 28 10 0.15 1hr, 4mins, 57sec

7 28 500 0.10 1hr, 22mins, 24sec
8 28 500 0.15 1hr, 3mins, 46sec

9 300 10 0.10 45mins, 22sec

10 300 10 0.15 35mins, 9sec

11 300 500 0.10 44mins, 38sec

12 300 500 0.15 35mins, 56sec

Table 2: Performance of Hadoop 50GB TeraSort when the

mapred.reduce.tasks, io.sort.factor, and io.sort.record.percent

parameters are varied

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

 R
un

ni
ng

 T
im

e
(m

in
ut

es
)

 mapred.reduce.tasks

 io.sort.record.percent = 0.10
 io.sort.record.percent = 0.15

Figure 4: Visualization of the results for io.sort.factor=500

from Table 2

point, it is important to realize that getting better or equal perfor-
mance with 10 reduce tasks means that the remaining 22 reduce
slots in the cluster can be used for running jobs from other users in
a shared cluster (shared Hadoop clusters are the norm rather than
the exception). Furthermore, such knowledge can be useful for
a cloud-based service like Amazon Elastic MapReduce to provi-
sion the right amount of capacity automatically for user-submitted
MapReduce jobs while (i) reducing the cost incurred by the user in
this pay-as-you-go environment, and (ii) being able to handle more
users and flash crowds.

3. PROBLEM FORMULATION AND SOLU-

TION APPROACHES
The empirical evidence from Section 2 suggests that the perfor-

mance of a MapReduce job J is some complex function of the job
configuration parameter settings. In addition, the properties of the
data as well as the resources allocated to the job in the cluster will
impact its performance. There exists some function FJ such that:

y = FJ (~p ∈ ~P , ~r ∈ ~R, ~d ∈ ~D) (1)

Here, y represents a performance metric of interest for J (e.g., J’s
running time). ~p represents the setting of the job configuration pa-
rameters for a run of J . ~r represents the resources allocated for

the run, and ~d represents the statistical properties of the data pro-
cessed by J during the run. The response surfaces shown in Figures
2(a) and 3(a) are partial projections of Equation 1 for the TeraSort
MapReduce program when run on our cluster.

Optimization Problem: Given an input dataset and resource al-
location for running a MapReduce job, we can think of ~p—which

represents the setting of the job configuration parameters for a run
of J—as specifying an execution plan for J . Different choices of
the execution plan give rise to potentially different values for the
performance metric of interest for J .3 The problem we highlight in
this paper is to automatically and efficiently choose a good execu-
tion plan for J given an input dataset and resource allocation.4 The
rest of this section discusses some potential approaches to address
this problem.

3.1 Getting Rid of the Tuning Knobs
An initial reaction and a reasonable approach to this problem

is to eliminate the “tuning knobs.” In recent years, commercial
database vendors have tried to eliminate database tuning knobs
through code rewrites or by implementing self-tuning controllers
(e.g., [16]). The Hadoop community is making similar efforts, e.g.,
for the high-impact io.sort.record.percent parameter considered in
Table 2 and Figure 4 [9].

However, the majority of parameters have been created to ex-
pose some fundamental decision in the underlying code that cannot
be made optimally without knowing the properties of the actual
MapReduce job being processed, its input data, and resource allo-
cation. We cannot truly eliminate these parameters. There are mul-
tiple implementation choices (as discussed in the following subsec-
tions) that differ in how to make the corresponding decision. Also
bear in mind that eliminating an exposed knob can have serious
software-engineering implications. Pushing the responsibility for
setting the parameter into the underlying code can make the code
complex, and consequently, hard to maintain and prone to bugs.

3.2 Database Query-Optimizer-Style Approach
Query optimizers in database systems deal with a similar op-

timization problem, namely, finding a good execution plan for a
declarative SQL query. The approach used by query optimizers is
to maintain statistics (e.g., histograms) about the input data; and
given a query ~q, to use these statistics in conjunction with a cost

model to estimate the cost of various execution plans for ~q. The
execution plans are composed of operators—e.g., index scan, sort,
and hash join—from a known and fixed set. Intuitively, the cost
model has the form:

y = F (~q ∈ ~Q, ~p ∈ ~P , ~r ∈ ~R, ~d ∈ ~D) (2)

Here, y represents a performance metric of interest for the SQL
query ~q. ~p represents an execution plan for ~q. ~r represents the

resources allocated for running the plan, and ~d represents the sta-

tistical properties of the data processed by ~q. Given ~q, ~r, and ~d, a
search algorithm (e.g., dynamic programming [12]) is used to find

a good execution plan from the space of plans ~P supported by the
database system’s execution engine.

Provided this overall approach can be extended to MapReduce
programs, efficient search algorithms can find good plans quickly.
There is more than thirty years of work on database query optimiza-
tion technology that can be leveraged. However, some stumbling
blocks need to be overcome to make this approach work for ad hoc
MapReduce programs:
• Black-box map and reduce functions: The cost model will now

have to account for the fact that map and reduce functions are
usually written in programming languages like Java, Python,
and C++ that are not restrictive or declarative like SQL.

3The problem becomes more complex if multiple performance
metrics are involved, e.g., suppose we want to minimize running
time subject to a maximum bound on per-node memory usage.
4The resource allocation can also be considered a choice that has
to be made automatically [10].

• Lack of statistics about the input data: Little knowledge about
the input data may be available before the job is submitted.
Keys and values are often extracted dynamically from the in-
put data by the map function, so schema and statistics about the
data may be unknown (like in Figure 1).

• Differences in plan spaces: The execution plan space for SQL
queries is very different from the plan space of job configura-
tion parameters outlined in Section 2 for MapReduce programs;
so algorithms from SQL query optimizers may not translate di-
rectly for optimizing MapReduce programs.

Nevertheless, for at least two reasons, it will be a serious mistake
to label the work on centralized and parallel database query opti-
mization as inapplicable for MapReduce job configuration param-
eter optimization. First, many MapReduce programs are written
once and run many times over their lifetime (usually on different
datasets). Programs for extract-transform-load (ETL) and report
generation are good examples. Properties of such programs as well
as good configuration settings for them can be learned over time in
the spirit of learning optimizers like Leo [15]. Second, higher-level
languages for MapReduce frameworks like HiveQL and Pig allow
schema to be associated with base and intermediate data.

3.3 Use of Dynamic Profiling
One approach to overcome some of the stumbling blocks from

Section 3.2 is to invest some resources upfront—i.e., before actual
job execution starts—to collect any missing information needed to
optimize the actual job’s configuration parameters. We will illus-
trate this approach with an example. One of the main considera-
tions in optimizing the TeraSort program (and, in general, in op-
timizing most parallel programs) is to balance the work equally
across all reducer tasks.5 For achieving such balance—assuming
fairly homogeneous resource allocation to all reducer tasks—the
overall output data generated by all the mapper tasks has to be par-
titioned equally across all the reducer tasks.

The input data distribution may not be known ahead of time,
so the TeraSort implementation first collects a sample of the input
data. If there are k reducer tasks, then the quantiles in the sample
are computed that split the sample data into k equal-sized parti-
tions. These k-1 split points are then used during actual job ex-
ecution to split the data into approximately equal-sized partitions.
As one would expect, the actual load-balancing achieved would de-
pend on how well the sample captures the actual data distribution.
The literature on this topic is vast (e.g., sample sort [3] and proba-

bilistic splitting [7]).
The basic idea of dynamic profiling through sampling applies to

parameter configuration for MapReduce jobs, but some challenges
arise:
• A strong assumption in the sampling-based partitioning tech-

nique outlined above is that the data type and the data distribu-
tion of the key in the input data (before applying the map func-
tion) are the same as those in the data generated after the map
function has been applied. This assumption holds for sorting,
but it does not hold for the majority of MapReduce programs
(e.g., see the map function in Figure 1).

• Most (if not all) previous implementations of sample sort and
probabilistic splitting assume that the input data sample can be
assembled by sampling randomly either at the record level or at
the block level. However, given an arbitrary MapReduce pro-
gram, there are restrictions on how the input data can be ac-
cessed. Usually, the data can only be accessed in a first-to-last

5The Partitioner class user for this purpose is a configuration pa-
rameter to a MapReduce job, with hash partitioning as the default.

sequential fashion (based on an iterator interface) over prede-
termined partitions of the input data (called splits in Hadoop).

In this setting, designing an efficient sampling harness for dynamic
profiling in MapReduce frameworks is a nontrivial research and en-
gineering challenge which, to our knowledge, has not been consid-
ered before. There are some desiderata for such a sampling harness.
Extra run-time overhead must be kept low, ideally some bounded
fraction of the job’s overall running time. There is the danger of
unrepresentative samples generating incorrect estimates that lead
to performance degradation rather than improvement. Thus, devel-
oping or adopting sampling techniques that give probabilistic error
guarantees is highly desirable [13].

The sampling harness should not require major changes or addi-
tions to the MapReduce code base; higher code complexity lowers
the chances of the harness being adopted by the core developers.
From this perspective, it is desirable to leverage features of the cur-
rent MapReduce framework whenever possible rather than rolling
out our own. Next, we discuss some specific questions that the
design of the sampling harness will have to account for.

Where is the sampling run from? TeraSort does client-side sam-
pling, i.e., it runs the sampling from the client node where the job
is submitted. An alternative is to run an extra MapReduce job,
called the sampling job, to do the sampling as well as to use the
collected sample to determine good parameter settings for the ac-
tual job which will be run subsequently. Both techniques have their
pros and cons. Client-side sampling is centralized and can cause
significant overhead on the client node (which often is a worker or
master node), especially if the map function has to be run on the
collected samples. However, client-side sampling avoids the fairly
high job setup overheads of the sampling job.

When is the sampling done? Even with dynamic profiling, the sam-
ples can be precomputed before the job is submitted. This point
may seem contrary to what we said earlier. To collect samples from
an input file, we only need to know the record boundaries (e.g.,
the newline character in text files); the actual schema need not be
known at this point. Such “precomputed” samples can be collected
efficiently and nonintrusively, e.g., through coin-toss random sam-
pling when the file is loaded into the system. Precomputed samples
can be processed much more efficiently by the sampling job com-
pared to starting mapper tasks for the entire data while sampling at
job submission time.

What type of sampling is used? TeraSort uses a simple sampling
strategy. It accesses a predetermined number s of input data splits
(usually, each HDFS block in the input forms a split), and grabs
the first n keys and values from each sampled split. (Both s and
n are specified statically.) While this strategy is efficient—recall
the restrictions on data access—it is unclear whether this strat-
egy can give strong probabilistic error guarantees. It is possible
to do coin-toss sampling or reservoir sampling [18] (which bounds
memory requirements under an unknown number of total keys) on
the sampled splits. These strategies may give better probabilis-
tic error guarantees but at higher cost since the sampled split will
have to be processed completely. Note from Table 1 that the de-
fault block/split size is 64MB, which is much larger than typical
database or filesystem blocks.

3.4 Reacting Through Late Binding
While some of the concerns of the optimizer-style approach are

potentially addressed by dynamic profiling, it also has to rely on a
cost model to estimate the performance of different settings of con-
figuration parameters like those in Table 1. It is unclear whether
such models can be developed to work at scale, and needs fur-
ther research. It is therefore important to design and evaluate ap-

proaches that either rely less or do not rely at all on the existence
of cost models. This section and the next discuss such approaches.

The dependence on cost models can be reduced through “late-
binding” approaches that delay the setting of one or more parame-
ters until after some part of the execution has been observed. This
approach can be applied for parameters whose value can either (i)
be changed during job execution, or (ii) does not have to be set un-
til part of the execution is complete. Hadoop uses a late-binding
approach to decide whether to partially aggregate the output of a
mapper task. Partial aggregation—which can be done in a MapRe-
duce job by specifying a Combiner class as a job configuration
parameter—essentially trades compute cycles for potential savings
in disk I/O and network data transfer [14]; so the choice of whether
to apply a specified Combiner or not has to be done carefully.

The concept of speculative execution can be useful here as well
as in Section 3.5. If some part of the execution can be done and then
undone efficiently (if needed), then reactive setting can be applied
to a larger class of parameters while keeping the performance im-
pact low. (However, the risk of thrashing has to be dealt with.) Cur-
rently, MapReduce frameworks have support for speculative execu-
tion only at the granularity of full mapper and reducer tasks (which
is aimed at lowering the chances of some slow or failed tasks in-
creasing the overall job completion time).

3.5 Competition-based Approaches
The idea here is (i) to start multiple instances of the same task

concurrently, with each instance having a different setting of the job
configuration parameters; (ii) to quickly identify the best instance;
and (iii) to kill all the other instances. Similar ideas have been
used for adaptive processing of queries in database systems (e.g.,
[1]). The speculative execution feature of MapReduce frameworks
is potentially useful here. Currently, the speculative instances are
run with the same parameter configuration as the main instance.

While the reactive and competitive approaches reduce or elimi-
nate the need for cost models, the reality is more subtle. The reac-
tive and competitive approaches have to predict the performance of
an entire job run by observing only an initial part of the execution.
If mapper and reducer tasks run in multiple waves—which may be
a common occurrence for good performance in small MapReduce
clusters (say, with ≤ 20 nodes)—then the reactive and competitive
approaches can adjust the configuration parameter settings of the
current wave based on observations from the previous waves.

3.6 Hybrid Approaches
It is possible that no single approach is good enough to set all

high-impact job configuration parameters; so a hybrid approach
that combines two or more of the above approaches may be needed.

4. RESEARCH AGENDA
We conclude this position paper by listing a five-point research

agenda for automatic setting of job configuration parameters for
MapReduce programs:
1. A necessary first step is to conduct a comprehensive empirical

study with a representative class of MapReduce programs and
different cluster configurations to understand (and potentially
model) parameter impacts, interactions, and response surfaces.
This study can inform the remaining steps. Monitoring data can
be collected and analyzed using tools like Chukwa [4]. Since
job running times are high, ideas from experiment-driven man-
agement (e.g., quickly generating approximations of response
surfaces like Figure 2(a)) can also be beneficial here [2].

2. Is it possible to develop a cost model that is useful to recom-
mend good parameter settings for MapReduce job configura-
tion parameters? It seems feasible to develop a cost model that
can deal with common classes of map and reduce functions by

providing mechanisms to learn and plug in profiles for these
functions. At the same time, it is possible that the best cost
model that works at scale is a collection of parameterized rules.

3. Designing an efficient sampling harness will possibly become
relevant once we have a good understanding of cost models as
well as parameter impacts and interactions as a function of the
properties of the job, input data, and allocated resources.

4. This paper focused on optimizing job configuration parame-
ters for ad hoc MapReduce programs. A separate but closely-
related problem is to tune the performance of a MapReduce
program that is run repeatedly (e.g., for daily report generation)
and whose current performance is unsatisfactory.

5. Insights from automatic optimization of single MapReduce pro-
grams will be crucial while addressing other optimization prob-
lems in the MapReduce framework like: (i) generating an ex-
ecution plan composed of one or more MapReduce jobs for
a higher-level operation like join [11]; (ii) optimizing a given
graph (e.g., a chain or a DAG) of MapReduce programs that
are related through input-output relationships; and (iii) tuning
the layout of input data accessed by a MapReduce program.

5. REFERENCES

[1] R. Avnur and J. Hellerstein. Eddies: Continuously Adaptive
Query Processing. In Proc. of SIGMOD Conf., May 2000.

[2] S. Babu, N. Borisov, S. Duan, H. Herodotou, and
V. Thummala. Automated Experiment-Driven Management
of (Database) Systems. In Proc. of the 12th Workshop on Hot
Topics in Operating Systems (HotOS), May 2009.

[3] G. Blelloch, C. Leiserson, B. Maggs, C. G. Plaxton, S. Smith,
and M. Zagha. A Comparison of Sorting Algorithms for the
Connection Machine CM-2. In Proc. of SPAA, 1991.

[4] J. Boulon et al. Chukwa: A Large-scale Monitoring System.
In Cloud Computing and its Applications, 2008.

[5] S. Chaudhuri and G. Weikum. Rethinking Database System
Architecture: Towards a Self-Tuning RISC-Style Database
System. In Proc. of VLDB Conf., Sept. 2000.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Proc. of OSDI, 2004.

[7] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. Parallel
Sorting on a Shared-Nothing Architecture using Probabilistic
Splitting. In Proc. of PDIS, 1991.

[8] Apache Hadoop. http://hadoop.apache.org/.
[9] Map-side sort is hampered by io.sort.record.percent.

issues.apache.org/jira/browse/MAPREDUCE-64.
[10] K. Kambatla, A. Pathak, and H. Pucha. Towards Optimizing

Hadoop Provisioning in the Cloud. In Proc. of the First
Workshop on Hot Topics in Cloud Computing, June 2009.

[11] C. Olston, B. Reed, A. Silberstein, and U. Srivastava.
Automatic Optimization of Parallel Dataflow Programs. In
Proc. of USENIX Annual Technical Conf., 2008.

[12] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access Path Selection in a Relational
Database Management System. In Proc. of SIGMOD Conf.,
June 1979.

[13] S. Seshadri and J. F. Naughton. Sampling Issues in Parallel
Database Systems. In Proc. of EDBT Conf., 1992.

[14] A. Shatdal and J. F. Naughton. Adaptive Parallel
Aggregation Algorithms. In Proc. of SIGMOD Conf., 1995.

[15] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO -
DB2’s LEarning Optimizer. In Proc. of VLDB Conf., Sept.
2001.

[16] A. J. Storm, C. Garcia-Arellano, S. Lightstone, Y. Diao, and
M. Surendra. Adaptive Self-tuning Memory in DB2. In Proc.
of VLDB Conf., 2006.

[17] A. Thusoo et al. Hive - A Warehousing Solution Over a
Map-Reduce Framework. PVLDB, 2(2):1626–1629, 2009.

[18] J. S. Vitter. Random Sampling with a Reservoir. ACM Trans.
on Mathematical Software, 11(1):37–57, Mar. 1985.

