Guarantees for Tuning the Step Size using a Learning-to-Learn Approach

Xiang Wang, Shuai Yuan, Chenwei Wu, Rong Ge
Duke University

How to train a neural net?

- How to train neural networks?
 - Just use SGD/Adam!

How to train an optimizer?

- Meta-gradient Explosion/ Vanishing
 - Objective: \(\min f(w) = \frac{1}{T} \sum_{t=1}^{T} \nabla f_{w}(t) \)
 - Algorithm: gradient descent with constant step
 - Naive meta-objective: loss at last step \(F(\eta) = f(w_{T}) \)
 - Theorem: For almost all values of \(\eta \), the meta-gradient \(F'(\eta) \) is either exponentially large or exponentially small in \(T \).

- Meta-stepping
 - Idea: use a meta-learning approach to tune hyper-parameters or learn a new optimizer!
 - Goal: find a good optimizer for a distribution of tasks.
 - Idea: Abstract the optimization algorithm as a mapping from the current state to the next state with parameter \(\theta \). Optimize the parameter \(\theta \) for the distribution of task.
 - Optimizer can be as simple as SGD with tunable step size, can also be as complicated as a deep neural network.

- Generalization of Trained Optimizer
 - Setting: least squares problem \(y = w^{\intercal} x + \xi, \|w\| = 1, x \sim N(0, I_{d}), \xi \sim N(0, \sigma^{2}) \)
 - Objective: squared loss on training data
 \[
 f(w) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - w^{\intercal} x_i)^2
 \]
 - Algorithm: gradient descent with constant step size (similar for SGD)
 \[
 w_{t+1} = w_t - \eta f(w_t)
 \]
 - Two ways to define meta-objective
 1. Train-by-train: train meta-objective on training set, e.g., simply choose \(F(\eta) = f(w_{T}) \)
 2. Train-by-validation [Metz et al. 2019]
 - Use a separate validation set \((x_{i,v}^{\prime}, y_{i,v}^{\prime})\)…\((x_{i,v}^{V}, y_{i,v}^{V})\)
 - Define
 \[
 G(\eta) = \frac{1}{2|\mathcal{V}|} \sum_{i=1}^{n} (y_i^{\prime} - w_{T}^{\intercal} x_i^{\prime})^2
 \]
 - When do we need train-by-validation?
 1. Large noise and small sample size
 - The ERM solution is close to \(w^{*} \)
 2. Small noise and large sample size
 - \(w^{*} \) is either exponentially large or exponentially small in \(T \)

Learning to learn

- Learning to learn
 - \(w \)
 - Learning to learn
 - Optimizer \((\theta)\)
 - \(\Delta w \)
 - \(w = w + \Delta w \)
 - \(\nabla f(\theta) \)

Empirical Verification

- Step size tuning on least squares problems

MLP optimizer on MNIST dataset

Empirical Verification

- MLP optimizer on MNIST dataset

- Step size tuning on least squares problems

Graphical Overview

- Algorithm: gradient descent with constant step size
 - \(w_{t+1} = w_t - \eta f(w_t) \)
 - \(\eta \) is either exponentially large or exponentially small in \(T \)

- \(G(\eta) \) for all values of \(\eta \), the meta-gradient \(F'(\eta) \) is either exponentially large or exponentially small in \(T \).

- Theorem: For almost all values of \(\eta \), the meta-gradient \(F'(\eta) \) is either exponentially large or exponentially small in \(T \).

- Idea: meta-gradient is exponentially large (small) because the meta-objective is exponentially large (small) in \(T \).

- New objective: \(G(\eta) = \frac{1}{2|\mathcal{V}|} \sum_{i=1}^{n} (y_i^{\prime} - w_{T}^{\intercal} x_i^{\prime})^2 \)

- Theorem: The meta-gradient \(G'(\eta) \) is always polynomial in all relevant parameters.

- \(G'(\eta) = \frac{1}{2|\mathcal{V}|} F'(\eta) \), both terms are exponentially large or small, but they cancel each other.

- This is exactly how one would compute \(G'(\eta) \) using backpropagation → numerical issues!