
Aggregated Deletion Propagation for
Counting Conjunctive Query Answers

Xiao Hu, Shouzhuo Sun, Shweta Patwa, Debmalya Panigrahi, and Sudeepa Roy

{xh102, ss1060, sjpatwa, debmalya, sudeepa}@cs.duke.edu
Duke University, Durham, NC

ABSTRACT
We investigate the computational complexity of minimizing
the source side-effect in order to remove a given number
of tuples from the output of a conjunctive query. This is
a variant of the well-studied deletion propagation problem,
the difference being that we are interested in removing the
smallest subset of input tuples to remove a given number
of output tuples while deletion propagation focuses on re-
moving a specific output tuple. We call this the Aggregated
Deletion Propagation problem. We completely characterize
the poly-time solvability of this problem for arbitrary con-
junctive queries without self-joins. This includes a poly-time
algorithm to decide solvability, as well as an exact structural
characterization of NP-hard instances. We also provide a
practical algorithm for this problem (a heuristic for NP-
hard instances) and evaluate its experimental performance
on real and synthetic datasets.

PVLDB Reference Format:
Xiao Hu, Shouzhuo Sun, Shweta Patwa, Debmalya Panigrahi,
and Sudeepa Roy. Aggregated Deletion Propagation for Counting
Conjunctive Query Answers. PVLDB, 12(xxx): xxxx-yyyy, 2020.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
The problem of view update (e.g., [3, 11]) – how to change

the input to achieve desired changes to the query output or
view – is a well-studied problem in the database literature.
View update problems enable users to tune the output in
order to meet their prior expectation, satisfy external con-
straints, or examine and compare multiple options. A par-
ticularly well-studied class of view update problems is what
is known as deletion propagation problems (see Buneman,
Khanna, and Tan [4]; for follow up literature, see related
work). In these problems, the goal is to remove a specific
tuple from the output of a query by removing input tuples.
In this paper, we study a natural variant of this problem
where we seek to remove at least a given number of output

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

tuples rather than any specific output tuple. We call this
the Aggregated Deletion Propagation problem.

Formally, in the Aggregated Deletion Propagation (ADP),
we are given a query Q, a database D, and a target integer
k. The goal is to remove at least k tuples from Q(D) by
removing the minimum number of input tuples from D (this
objective is called source side-effect in the literature). Our
main motivation for the ADP problem comes from two generic
application settings. First, ADP can be used to obtain a de-
sired change in the output size with minimum intervention
on the input. As we will describe below, in many practical
situations, the goal is to create a sufficiently large impact
on the output by removing a given number of output tuples
rather than removing any specific tuple. Our problem ap-
plies to these situations. Second, ADP can be used to analyze
the robustness of the output with respect to possible disrup-
tions in the input. In other words, if there are inadvertent
changes to the input that are not within our control, how
badly can it effect the output of a query? We give examples
of these two applications below.

Example 1.1. Suppose a university wants to plan ahead
in terms of managing waitlists for its classes. This can be
achieved via the following query:

QWL(S,C) : −Major(S,M), Req(M,C), NoSeat(C)

The first query QWL says that a student S is on the wait-
list for a class C if the following happen: (1) S intends to
major in M (we assume students can have multiple majors),
(2) major M requires class C, and (3) there are no seats
available in C. The university may try to figure out the eas-
iest alternative for reducing the size of the waitlist to some
target, which amounts to reducing the size of the output of
query QWL by the same amount. The waitlist entries can
be removed by steering students away from the major (or
creating an entry condition), relaxing the requirements for
the major, or by increasing the number of seats in the class;
all of these options correspond to removing tuples from the
input relations of QWL.

Example 1.2. We consider the same context as in the
previous example, but suppose the new task is to estimate
what classes can be reliably offered in a future semester. This
can be done using the following query

QPossible(C) : −Teaches(P,C), NotOnLeave(P).

This query lists the possible courses that can be offered in a
semester. A course C can be offered if there is a professor

1

P who is able to teach C and is not on leave. If all profes-
sors who are able to teach C go to leave (removal of entries
from NotOnLeave) or do not want to teach C (removal of
entries from Teaches), C cannot be offered. While approv-
ing the leave requests and asking for teaching preferences,
the university may want to study the robustness of QPossible
with respect to these changes: e.g., what is the minimum
changes in the input that would lead to more than 10% of
the courses not being able to be offered in that semester. If
this size is small, i.e., many courses are critically dependent
on a few professors, the university would be able to decide
whether all can be on leave or change teaching preferences
appropriately. Alternatively, this information might also in-
form the decision to hire faculty in a particular area.

Example 1.3. We now turn to a third example from the
area of robustness of networks. Consider a query

Q3−path(A,B,C,D) : −R1(A,B), R2(B,C), R3(C,D)

that stores all possible paths between two end vertices that go
through two layers of intermediate vertices in a communica-
tion or transportation network. If it were possible to disrupt
(say) 80% of the paths by only removing (say) 1% of links,
then the network is clearly not robust. On the other hand,
if this would require removing (say) 80% of the links, that’s
a much more robust network. This is precisely the informa-
tion the ADP can provide us on this query. Therefore, ADP

can estimate the inherent robustness of a network to either
malicious attacks or even just random failures.

Our contributions. In this paper, we propose the ADP

problem and study its complexity in depth for the class of
conjunctive queries without self-joins. Here, the results can
be an arbitrary projection of the natural join of the relations
appearing on the body of the query (as illustrated in QWL,
QPossible, and Q3−path above). Our contributions can be
summarized as follows:

• Algorithmic Dichotomy: We give an algorithm that
only takes the query Q as input, and decides in time
that is polynomial in the size of the query, whether ADP
can be efficiently solved (in polynomial time data com-
plexity [28]) on Q for all instances D and all values of
k. The algorithm uses a few simplification steps that
preserve the complexity of the problem. At the end,
the query is NP-hard if the simplification steps reduce
it to a small number of ‘core’ hard queries; otherwise,
it is poly-time solvable. (Section 4)

• Structural Dichotomy: To complement our algo-
rithmic characterization of the complexity of the ADP

problem, we also provide a structural characterization
of the complexity by identifying three simple struc-
tures – triad-like, non-hierarchical head join, and strand
– whose presence exactly captures all queries where
ADP in NP-hard. (Section 5)

• Efficient unified algorithm: We give a poly-time
(in data complexity) algorithm for solving ADP for all
CQs without self-joins. It returns the optimal solution
for queries on which ADP is poly-time solvable, and
provides a poly-time heuristic for queries on which ADP

is NP-hard. We also extend the algorithm to support
selection operations. (Section 7)

• Experimental evaluations: We provide experimen-
tal evaluation of our algorithms on synthetic and real
datasets in terms of scalability, various classes of queries,
as well as the optimization techniques. (Section 8)

2. RELATED WORK
The classical view update problem, of which deletion prop-

agation is an instantiation, has been studied extensively over
the last four decades (e.g., [3, 11]). The deletion propaga-
tion problem has been popular more recently, starting with
the seminal work by Buneman, Khanna, and Tan [4]. They
studied the complexity of both the source side-effect (ob-
jective is to delete the minimum number of input tuples)
and the view side-effect (objective is to delete the minimum
number of other output tuples) versions, in order to delete
a particular output tuple. For source side-effect and select-
project-join-union (SPJU) operators, they showed that for
PJ or JU queries, finding the optimal solution is NP-hard,
while for others (e.g., SPU or SJ) it is poly-time solvable.
This work was extended to multi-tuple deletion propagation
by Cong, Fan, and Geerts [9]. They showed that for sin-
gle tuple deletion propagation, a property called key preser-
vation makes the problem tractable for SPJ views; how-
ever, if multiple tuples are to be deleted, the problem be-
comes intractable for SJ, PJ, and SPJ views. Kimelfeld,
Vondrak, and Williams [17, 16, 18] extensively studied the
complexity of deletion propagation for the view side-effect
version and provided structural dichotomy and trichotomy
(poly-time, APX-hard/constant approximation, and inap-
proximable) for single and multiple output tuple deletions.

Beyond the context of deletion propagation, several di-
chotomy results have been obtained for problems motivated
by data management, e.g., in the context of probabilistic
databases [10], responsibility [23], or database repair [21].
Another problem related to ADP is reverse data management
and how-to queries [24, 25]. Given some desired changes in
the output (e.g., modifying aggregate values, creating or re-
moving tuples), the goal is to obtain a feasible modification
of the input that satisfies a given set of constraints and opti-
mizes on some criteria. In this line of research, the focus has
been on developing an end-to-end system using provenance
and mixed integer programming, and not on the complex-
ity of the problem. ADP is also related to explanations by
intervention [30, 27, 26], where the goal is to find a set of
input tuples captured by a predicate whose deletion changes
one or more aggregate answers to the maximum extent. ADP
differs in that the aim is to make a desired change in the
output by removing the minimum number of input tuples.

Finally, closely related to the ADP is the resilience prob-
lem, originally studied by Freire et al. for the class of CQs
without self-joins and functional dependencies [12] (see also
[13] for an extension to a class of queries with self-joins).
The input to the resilience problem is a Boolean CQ and
a database D such that Q(D) is true, and the goal is to
remove a minimum set of tuples from D to make Q false
on D. Observe that the resilience problem is identical to
ADP with k = |Q(D)|. [12] gave a “structural dichotomy”
characterizing whether a given query is poly-time solvable
or NP-hard using a core hard structure called “triad”. The
generalization to arbitrary values of k leads to interesting
consequences, e.g., queries that are poly-time solvable for
resilience become hard for ADP), whereas the presence of ar-
bitrary projections in the output makes ADP even more NP-

2

R1

A B

a1 b1
a2 b2
a3 b3

R2

B C

b1 c1
b2 c2
b2 c3
b3 c3

R3

C E

c1 e1
c2 e3
c3 e3

Q1(D)
A B C E

a1 b1 c1 e1
a2 b2 c2 e3
a2 b2 c3 e3
a3 b3 c3 e3

Q2(D)
A E

a1 e1
a2 e3
a3 e3

Figure 1: An example of database schema R =

{R1, R2, R3} with A = {A,B,C,E}, attr(R1) = {A,B},
attr(R2) = {B,C}, and attr(R3) = {C,E}. An instance

D of R with 10 tuples is also shown. The results for

Q1(A,B,C,E) : −R1(A,B), R2(B,C), R3(C,E) and Q2(A,E) :

−R1(A,B), R2(B,C), R3(C,E) are resp. Q1(D) and Q2(D).

hard for ADP. Nevertheless, we use the characterization for
resilience from [12] as a special case of our algorithmic and
structural characterization for ADP and discuss the resilience
problem further in subsequent sections.

3. PRELIMINARIES
In this section, we start with some basic definitions in rela-

tional databases. Then, we formally define the ADP problem
and discuss some special cases that will motivate our general
technique.

3.1 Background
We consider the standard setting of multi-relational data-

bases and conjunctive queries. Let R be a database schema
that contains p tables R1, · · · , Rp. Let A be the set of all
attributes in the database R. Each relation Ri is defined
on a subset of attributes attr(Ri) ⊆ A. A relation Ri is
vacuum if attr(Ri) = ∅, and non-vacuum otherwise. We
use A,B,C,A1, A2, · · · etc. to denote the attributes in A
and a, b, c, · · · etc. to denote their values. For each attribute
A ∈ A, rels(A) denotes the set of relations that A appears,
i.e., rels(A) = {Ri : A ∈ attr(Ri)}.

Given the database schema R, let D be a given instance of
R, and the corresponding instances ofR1, · · · , Rp beRD1 , · · · ,
RDp . Where D is clear from the context, we will drop the
superscript and use R1, · · · , Rp for both the schema and in-
stances. Any tuple t ∈ Ri is defined on attr(Ri). For any
attribute A ∈ attr(Ri), πAt ∈ dom(A) denotes the value
of attribute A in tuple t. Similarly, for a set of attributes
B ⊆ attr(Ri), πBt denotes the values of attributes in B for
t with an implicit ordering on the attributes. It should be
noted that for a vacuum relation Ri, either Ri = {∅} or
Ri = ∅ (respectively interpreted as “true” and “false”).

We consider the class of conjunctive queries without self-
joins, formally defined as

Q(A) : −R1(A1), R2(A2), · · · , Rp(Ap)

where A ⊆ A denotes the output attributes and A −A the
non-output attributes (also called the existential variables).
Note that we do not have any projection in the body. Each
Ri in Q is distinct, i.e., the CQ does not have a self-join.
If A = A, such a CQ query is known as full CQ which
represents the natural join among the given relations. If
A = ∅, such a CQ is boolean which indicates whether the
result of natural join among the given relations is empty or
not; otherwise, it is non-boolean.

Extending the notation, we use rels(Q) to denote all the
relations that appear in the body of Q, attr(Q) to denote all
the attributes that appear in the body of Q, and head(Q) ⊆

A
B

C

I

E

F K

H

J

attributes

R1

R2

R3

R4

R5

R6

relations

Figure 2: Hypergraph (left) and graph (right) repre-

sentation for an example CQ Q(A,C, F,K) : − R1(A,B,C),

R2(A,H), R3(B,E, F), R4(E,K), R5(K, I), R6(C, I, J).

attr(Q) to denote all the attributes that appear in the head
of Q (so, head(Q) = A in the previous paragraph). When
a full CQ query Q is evaluated on an instance D, if Ri =
∅ for some vacuum relation Ri ∈ rels(Q), then Q(D) is
also empty; otherwise, the result Q(D) is evaluated on non-
vacuum relations. When a CQ query Q is evaluated on an
instanceD, the result is exactly the projection of the full join
result on attributes in head(Q) (after removing duplicates).
We give an example in Figure 1.

A classical representation of a CQ Q is to model it as a
hypergraph, where each attribute in attr(Q) is a vertex and
each relation in rels(Q) is a hyperedge. In this work, we
use a simpler representation for capturing the connectivity
of queries and model it as a graph GQ, where each relation
is a vertex and there is an edge between Ri, Rj ∈ rels(Q)
if attr(Ri) ∩ attr(Rj) 6= ∅. This graph is denoted GQ.
A CQ Q is connected if GQ is connected, and disconnected
otherwise. An example is illustrated in Figure 2.

3.2 Problem Definition
Below, we formally define the ADP problem in terms of the

count of output tuples of a CQ:

Definition 3.1. Given a CQ Q on R, an instance D, and
a positive integer k ≥ 1, the aggregated deletion propagation
(ADP) problem aims to remove at least k results from Q(D)
by removing the minimum number of input tuples from D.

GivenQ, k, andD, we denote the above problem by ADP(Q,D,
k). Note that an implicit constraint on the input parameter
k is 1 ≤ k ≤ |Q(D)|. For instance, in Figure 1, ADP(Q1, D, 2)
will return a single tuple R3(c3, e3) since removing it would
remove the last two output tuples in Q1(D).

In this paper, we study the data complexity [28] of the
ADP problem, i.e., the size of the query and schema are fixed,
and the complexity is in terms of the size of the database D.
More precisely, we say that ADP(Q,D, k) is polynomial-time
solvable for a query Q if, for an arbitrary instance D and
integer k, the solution of ADP(Q,D, k) can be computed in
polynomial time in the size of D; otherwise, it is NP-hard.

For simplicity, we assume that all relations have distinct
set of attributes in an input CQQ, i.e., attr(Ri) 6= attr(Rj)
for every pair of relations Ri, Rj ∈ rels(Q). The rationale
is that removing duplicated relations won’t change the poly-
time solvability of the original CQ. The formal proof is given
in the full version [15].

3.3 Special Cases
Before we discuss the complexity of the ADP problem in

general, we note the following special cases:

ADP on boolean CQ. The ADP problem on boolean CQ
is also known as the resilience problem, i.e., removing the

3

minimum number of input tuples to make the true query
become false. The next theorem in [12] gives a decidability
result of the ADP problem on boolean CQs:

Theorem 3.2 ([12]). On a boolean CQ Q, the poly-
time solvability (in data complexity) of the ADP(Q,D, 1) prob-
lem can be decided in polynomial time (in query complexity).

ADP on CQ with vacuum relations. The ADP problem
becomes easy when Q contains a vacuum relation. Consider
an arbitrary input instance D for Q and integer k. If every
vacuum relation in Q has instance {∅}, we can remove query
results in Q(D) by removing the tuple {∅} in any one vac-
uum relation; otherwise, Q(D) = ∅ by definition, and there
is no need to remove anything. Therefore:

Lemma 3.3. For a CQ Q, if there exists some vacuum
relation, the ADP(Q,D, k) problem is poly-time solvable (in
data complexity).

Complexity of ADP with different choices of k: When
k = |Q(D)| or k = 1, the ADP problem is equivalent to the
resilience problem, which implies that ADP(Q,D, k) is NP-
hard even for a constant k for general CQs. In contrast, ADP
can be shown to be poly-time solvable (in data complexity)
for any fixed k if the query Q is a full CQ [15].

4. POLY-TIME DECIDABILITY
In this section, we are giving an algorithm that can decide

poly-time solvability of the ADP problem on general CQs.

Theorem 4.1. On a CQ Q, IsPtime(Q) can decide poly-
time solvability of the ADP(Q,D, k) problem, which runs in
polynomial time.

The procedure IsPtime(Q) is illustrated in Figure 3. Note
that when IsPtime(Q) returns true, the ADP(Q,D, k) prob-
lem is poly-time solvable, and NP-hard otherwise. The algo-
rithmic description of IsPtime is given in full version [15].
IsPtime(Q) runs in polynomial time in the query size.

The high-level idea is to alternately apply two simplifica-
tions steps on the input query, until a “base case” is arrived
at. The first simplification step is that of removing all uni-
versal attributes in the input query Q. In a CQ, an attribute
is universal if it is an output attribute appearing in all rela-
tions. After applying this step, if Q becomes boolean or con-
tains a vacuum relation (two of the base cases), then it is de-
cidable in polynomial time by Theorem 3.2 and Lemma 3.3.

Next, we check whether Q is connected or not. For a
disconnected query Q, we can decompose it into multiple
connected subqueries as follows: apply breadth-first search
or depth-first search algorithm on the graph GQ, and find
all connected components for GQ. The set of relations corre-
sponding to the set of vertices in one connected component
of GQ form a connected subquery of Q. In this case, we per-
form the second simplification step of decomposing Q into
multiple connected subqueries, followed by calling IsPtime
recursively on each connected subquery. More specifically,
let Q1, Q2, · · · , Qs be the connected subqueries of Q; then,
IsPtime(Q) will return

∧s
i=1 IsPtime(Qi). Otherwise, Q

ends up in “Others” (the third base case). In this case, Q
is connected, non-boolean, and does not contain either a
vacuum relation or a universal attribute. For all queries in
“Others”, IsPtime returns false.

We illustrate IsPtime with an example below.

Remove all

Boolean
Non-boolean

vacuum relation: true Disconnected: Others: false

universal attributes

(Lemma 4.3)

(Lemma 4.4)

(Theorem 3.2)

(Lemma 4.5)(Lemma 3.3)

There exists a

Q

IsPtime(Q) =
∧

i IsPtime(Qi)

Figure 3: Procedure IsPtime(Q).

Example 4.2. Consider an example CQ Q(A,F,G,H) :
−R1(A,B), R2(F,G), R3(B,C), R4(C), R5(G,H). Observe
that Q is non-boolean without any universal attribute and
vacuum relations. The simplification step applied to Q is
to decompose it into two connected subqueries, Q1 (with
R1, R3, R4) and Q2 (with R2, R5). For Q2, after remov-
ing the universal attribute G, it becomes disconnected. On
applying the simplification step again to Q2, it decomposes
into two connected subqueries, Q21 (with R2) and Q22 (with
R5). After removing the universal attribute F in Q21, re-
lation R2 becomes vacuum and IsPtime(Q21) returns true.
Similarly, IsPtime(Q22) returns true. However, Q1 is non-
boolean and contains no vacuum relation. Both simplifica-
tions fail on Q1, so IsPtime(Q1) returns false. Therefore,
IsPtime(Q) returns false and ADP(Q,D, k) is NP-hard.

The essence of IsPtime is in the two simplifications steps:
removing universal attributes and decomposing a discon-
nected query. Both these steps preserve the complexity of
the problem as formally stated in Lemma 4.3 and Lemma 4.4.
Intuitively, for any universal attribute, we can partition the
query results by the value of the universal attribute, and in-
terpret each class in the partition as the result of the same
query over a distinct sub-instance. Moreover, the deletion
of any input tuple t can only affect a single sub-instance
that shares the value of the universal attribute with t. The
original ADP instance now degenerates to finding an optimal
combination of solutions to the ADP problem defined over
each of the sub-instances, after removing the universal at-
tribute. Similarly, if the query is disconnected, the results
of all connected subqueries will join by cross product. Then,
the original ADP instance also degenerates to finding an opti-
mal combination of solutions to the ADP problem defined for
each connected subqueries. Finding the optimal combina-
tion is polynomial-time solvable since the size of the query
as well as the query result is polynomial. Thus, the com-
plexity of the original query can be deduced from that of
the simplified queries.

Our proof of Theorem 4.1 also follows the logical diagram
of IsPtime(Q), which is divided into two parts. First, we
show that these two simplification steps preserve the com-
plexity of the problem, as described above. Then, we deal
with the base cases. Note that the correctness for boolean
queries and vacuum relations are implied by Theorem 3.2
and Lemma 3.3. Therefore, it suffices to show the NP-
hardness of the ADP problem on Q, when Q is non-boolean,
connected, and contains no universal attribute or vacuum
relation; we show this in Lemma 4.5. Putting everything

4

together, the correctness for Theorem 4.1 then follows from
induction over the size of the query.

4.1 Hardness Preservation in Simplifications
In the first part, we show that when the simplifications

are applied to the input query, the complexity of the ADP

problem is preserved.

Lemma 4.3. Let A be a universal attribute in Q. Then,
ADP(Q,D, k) is NP-hard if and only if ADP(Q−A, D, k) is
NP-hard, where Q−A is the residual query after removing
attribute A from all relations in Q.

Lemma 4.4. Let Q1, Q2, · · · , Qs be the connected subqueries
of Q for s ≥ 2. The ADP(Q,D, k) problem is NP-hard if and
only if there exists some Qi for which the ADP(Qi, D, k) prob-
lem is NP-hard.

The proofs of these lemmas are similar in spirit. Namely,
we have two parts corresponding to the “if” and “only if”
directions. To prove the “if” direction, we show that if ADP

is NP-hard for Q−A (resp., there exists some Qi for which
ADP is NP-hard), then the ADP problem on Q is also NP-hard.
To prove the “only-if” direction, we show that if ADP is poly-
time solvable for Q−A (resp., ADP is poly-time solvable for
each connected subquery Qi), then ADP is also poly-time
solvable for Q as well. More specifically, given a poly-time
algorithm for solving ADP on Q−A (resp., given poly-time
algorithms for solving ADP on each Qi), we design a poly-
time algorithm for solving ADP problem on Q. The detailed
proofs of these lemmas are deferred to the full version [15].

4.2 NP-Hardness for “Others”
In this part, we prove the hardness of the class of queries

characterized by “others” bracket in Figure 3, as stated in
Lemma 4.5.

Lemma 4.5. For a CQ Q, if IsPtime(Q) goes to “others”
in Figure 3, i.e., if (1) Q contains no universal attributes;
(2) Q is non-boolean; (3) Q contains no vacuum relations;
and (4) Q is connected, then ADP(Q,D, k) is NP-hard.

We start by identifying three simple but NP-hard queries
for the ADP problem that will be at the core of showing
the above lemma. Then we present a general framework
of proving the hardness for a given CQ by mapping it to
another query on which the ADP problem is known (or has
been proven) to be NP-hard. Finally, we classify all queries
in Lemma 4.5 into three groups using the flowchart in Fig-
ure 4, and give a mapping from queries ending up in each leaf
of the flowchart to a core query identified at the beginning.

4.2.1 Core Queries
The three queries we focus on are the following:

Qcover(A,B) : −R1(A), R2(A,B), R3(B).

Qswing(A) : −R2(A,B), R3(B).

Qseesaw(A) : −R1(A), R2(A,B), R3(B).

Careful inspection reveals that these queries have a com-
mon property: w.l.o.g., we can assume that an optimal so-
lution of ADP(Q,D, k) won’t remove any tuples from relation
R2(A,B). The effect of the removal of any tuple (a, b) ∈ R2

Remove all

vacuum relation No vacuum

non-output attributes

(Case 1)

Connected
(Case 3)

Disonnected
(Case 2)

relation

There is a

Q

Figure 4: Proof plan of Lemma 4.5.

can also be achieved by removing tuple (a) ∈ R1 or (b) ∈ R3.
(The formal proof is deferred to the full version of the pa-
per [15].) Therefore, an optimal solution for ADP on any
one of these three queries could be restricted to removing
tuples only from R1(A) and R3(B). In this way, the ADP

problem on these queries can be interpreted as optimization
problems on bipartite graphs, which turn out to be NP-hard
(Lemma 4.6).

Lemma 4.6. Given an undirected bipartite graph G(A ∪
B,E) where E is the set of edges between two sets of vertices
A and B, and an integer k, each of the following problems
is NP-hard:

(1) Remove the minimum number of vertices in A∪B such
that at least k edges in E are removed.1

(2) Remove the minimum number of vertices in B such
that at least k vertices in A are removed;

(3) Remove the minimum number of vertices in A∪B such
that at least k vertices in A are removed;

Problem (1) is exactly partial vertex cover for bipartite
graphs, which is known to be NP-hard [5]. The NP-hardness
proofs for (2) and (3) are deferred to the full version [15].

4.2.2 Hardness Preserving Mapping
The high-level idea of relating an arbitrary query Q char-

acterized by Lemma 4.5 to the core queries is to divide the
attributes in attr(Q) into two groups, one mapped to A
and the other mapped to B. In this way, each relation in
Q plays the role of R1(A), R2(A,B) or R3(B) in the core
queries. The notion of “query mapping” is formally defined
below:

Definition 4.7 (Query Mapping). Suppose we are
given a function f : attr(Q1)→ attr(Q2) ∪ {∗}. Let

g(Ri) = {Y ∈ attr(Q2) : ∃X ∈ attr(Ri) s.t. f(X) = Y }.

f is said to be a query mapping if the following proper-
ties hold: (i) for every relation Ri ∈ rels(Q1), there is a
(unique) relation Rj ∈ rels(Q2) such that g(Ri) = attr(Rj).
(ii) for every relation Rj ∈ rels(Q2), there exists at least
one relation Ri ∈ rels(Q1) such that g(Ri) = attr(Rj).

In the definition above, if g(Ri) = attr(Rj) for relations
Ri ∈ rels(Q1) and Rj ∈ rels(Q2), then Ri ∈ rels(Q1)
is said to be mapped to relation Rj ∈ rels(Q2). The next

1A remove procedure on a graph is defined as: (1) when a
vertex is removed, all the incident edges are also removed;
(2) when all the incident edges on a vertex are removed, this
vertex is also removed.

5

lemma, whose proof is deferred to the full version [15], shows
that query mappings preserve hardness of the ADP problem.

Lemma 4.8. If there is a mapping from a CQ Q1 to an-
other CQ Q2, and ADP(Q2, D, k) is NP-hard, then ADP(Q1, D, k)
is also NP-hard.

4.2.3 Mapping to the core
To prove the NP-hardness of the ADP problem on a query

Q, it suffices to show a mapping to any core query, implied
by Lemma 4.8. The high-level idea is that for any query
characterized by Lemma 4.5, we find a partition of attributes
in Q as (I, J, attr(Q)− I− J) where I∩ J = ∅ and define the
mapping function f : X → {A,B, ∗} as follows:

f(X) =

 A if X ∈ I
B if X ∈ J
∗ otherwise

Then it remains to show that f is a mapping from Q to one
of the three core queries. As mentioned, we distinguish Q
into three cases in Figure 4, and identify the mapping for
each case separately. The mapping constructed for each case
with examples are given in the full version [15].

5. STRUCTURAL CHARACTERIZATION
In the last section, we provided a simple poly-time al-

gorithm IsPtime to decide the poly-time solvability of the
ADP problem for CQs without self-join. However, this algo-
rithm does not provide structural insight into what makes
the ADP problem NP-hard or poly-time solvable for individ-
ual queries. Namely, it does not provide a structural charac-
terization for solvability of the ADP problem, such as the one
shown for the special case of the resilience problem in [12].
To rectify this shortcoming and complement the procedural
dichotomy established in the last section, we provide, in this
section, a structural dichotomy of the ADP problem for CQs.
Interestingly, it turns out that the procedural and struc-
tural dichotomies do not have a one-one mapping; namely,
distinct cases of the IsPtime procedure map to same case
in the structural characterization, and vice-versa.

Our main theorem in this section is the following:

Theorem 5.1. For a CQ Q, ADP(Q, k,D) is NP-hard if
and only if one of the following happens:

• Q contains a “triad-like” structure,

• Q contains a “strand” structure, or

• in Q, the head join of non-dominated relations is non-
hierarchical.

In the rest of this section, we explain the the three “hard
structures” in Theorem 5.1 and give some intuition for why
they make the ADP problem NP-hard. The detailed proof of
Theorem 5.1 is in the full version of the paper [15].

5.1 Boolean CQ Revisited
As mentioned earlier, a complete characterization of Boolean

CQs for the ADP problem is known from previous work:

Theorem 5.2 ([12]). On a Boolean CQ Q without self-
joins, the problem ADP(Q,D, 1) is poly-time solvable if there
is no triad structure, and NP-hard otherwise.

To explain this result, we need to introduce some new ter-
minology. In a CQ Q, a relation Rj ∈ rels(Q) is exogenous
if there exists another relation Ri 6= Rj ∈ rels(Q) such that
attr(Ri) (attr(Rj), and endogenous otherwise. If there is
more than one relation defined on the same set of attributes,
we just consider any one of them as endogenous and the re-
maining ones as exogenous. For example, in the Boolean CQ
Q : −R1(A), R2(A,B), R3(B,C), R4(B,C), R5(B,C), there
are two endogenous relations: R1 and any one of R3, R4,
R5. Next, we define a path between a pair of relations
Ri, Rj ∈ rels(Q) as a path between any pair of attributes
A,B for A ∈ attr(Ri) and B ∈ attr(Rj). This brings us
to the definition of the triad structure:

Definition 5.3 (triad). A triad is a triple of endoge-
nous relations R1, R2, R3 such that for each pair of relations,
say R1, R2, there is a path from R1 to R2 only using any at-
tributes in attr(Q)− attr(R3).

Two examples of Boolean CQs containing a triad are Q4 :
−R1(A,B), R2(B,C), R3(C,A) andQT : −R1(A,B,C), R2(A),
R3(B), R4(C), on which the ADP problem is NP-hard.

5.2 Hard Structures for General CQs
A natural question for general CQs is how the existence of

output attributes changes the hardness of ADP problem. We
will explore this question starting with three hard structures.

5.2.1 Triad-like
We first observe that adding output attributes to a hard

Boolean CQ maintains the NP-hardness of the ADP problem.
For example, the CQQ(E,F,G) : −R1(A,B,E), R2(B,C, F),
R3(C,A,G) is NP-hard (since IsPtime returns false), which
contains the Q4. We extend the notion of triad to capture
this class of hard queries:

Definition 5.4 (triad-like). A triad-like structure is
a triple of endogenous relations R1, R2, R3 such that for each
pair of relations, say R1, R2, there is a path from R1 to R2

only using attributes in attr(Q)− (head(Q) ∪ attr(R3)).

This takes care of our first case: if there is a triad-like struc-
ture (in the non-output attributes), the CQ is NP-hard.

5.2.2 Non-hierarchical Join
The situation becomes more complicated when we add

output attributes to a poly-time solvable Boolean CQ. For
example, on query Q() : −R1(C,E), R2(E,F), R3(F,H),
adding a universal attribute A leads to a poly-time solvable
query Q(A) : −R1(A,C,E), R2(A,E, F), R3(A,F,H), but
adding attributes A,B selectively to some of the relations
(e.g., Q(A,B) : −R1(A,C,E), R2(A,B,E, F), R3(B,F,H))
can result in an NP-hard query. So, our goal is to understand
how the addition of output attributes changes the complex-
ity of the ADP problem. For simplicity, the head join for a CQ
Q denotes the residual query after removing all non-output
attributes from all relations in Q. We start with the class
of full CQs, i.e., without non-output attributes. A nice con-
nection between hierarchical join and our previously defined
procedure IsPtime can be observed.

Definition 5.5 (Hierarchical Join). A full CQ Q is
hierarchical if for each pair of attributes A,B ∈ attr(Q),
rels(A) ⊆ rels(B), rels(B) ⊆ rels(A), or rels(A) ∩
rels(B) = ∅, and non-hierarchical otherwise.

6

A

B

C F

E

H

(R1) (R2) (R4)

(R3) B

C F

E

H

(R1) (R2) (R4)

(R3)

(R1) (R2)

(R4)

C

H

(R3)F

(R1) (R2)

Figure 5: An example of hierarchical join Q(A, · · · , H) :

−R1(A,B,C), R2(A,B, F), R3(A,E),R4(A,E,H). The left is

the attribute tree and the right is an illustration of ap-

plying procedure IsPtime on Q.

Note that a hierarchical CQ can be organized into a tree
structure, where each relation is a root-to-node path. An
example is given in Figure 5. Moreover, each relation ends
up vacuum by alternately applying the two simplification
steps in IsPtime on this tree. In this way, if Q is hier-
archical, IsPtime(Q) always returns true. However, the
converse is not necessarily true. For example, Q(A,B,E) :
−R1(A,E), R2(A,B,E), R3(B,E), R4(E) is non-hierarchical
but IsPtime(Q) returns true (after removing the universal
attribute E, relation R4 becomes vacuum). We focus on
non-hierarchical CQs in the rest of this discussion.

The previous result on Boolean CQs only considers en-
dogenous relations. Unfortunately, this is insufficient for a
full CQ in general; for example, removing the exogenous re-
lationR2 would makeQpath(A,B) : −R1(A), R2(A,B), R3(B)
poly-time solvable. So, we need a more fine-grained notion
than exogenous/endogenous relations in characterizing the
complexity of non-Boolean CQs.

Definition 5.6 (Dominated Relation in Full CQs).
In a full CQ Q, relation Rj is dominated by relation Ri if
(1) attr(Ri) ⊆ attr(Rj); and (2) for any relation Rk with
attr(Ri)−attr(Rk) 6= ∅, attr(Rj)∩attr(Rk) ⊆ attr(Ri).

We say that a relation is dominated if it is dominated by
any other relation, and non-dominated otherwise. Note that
a dominated relation must be exogenous, but all exogenous
relations may not be dominated. A structural dichotomy for
full CQs based on dominated relations is given by:

Lemma 5.7. For a full CQ Q, the ADP(Q,D, k) problem
is NP-hard if and only if the non-dominated relations are
non-hierarchical.

Note that full CQs do not have any non-output attributes.
But, fortunately, the above hardness continues to hold even
on adding output attributes. To make this formal, we need
to extend the notion of dominated relations to general CQs.

Definition 5.8 (Dominated Relation in CQs). In a
CQ Q, relation Rj is dominated by relation Ri if (1) attr(Ri)
⊆ attr(Rj); (2) for any relation Rk with attr(Ri)−attr(Rk)
6= ∅, attr(Rj)∩attr(Rk) ⊆ attr(Ri)∩head(Q); (3) attr(Ri)
⊆ head(Q) or head(Q) ⊆ attr(Ri).

If there is more than one relation defined on the same
attributes, i.e., attr(Ri) = attr(Rj), then we just consider
any one of them as non-dominated and the remaining ones as
dominated. We can now use this extended definition to claim

our second hard case: if the head join of non-dominated rela-
tions is non-hierarchical, then the CQ is NP-hard. Note that
these definitions of “domination” are different from [12], as
we need a more fine-grained characterization of exogenous
relations for ADP. Moreover, Lemma 3.3 can be easily in-
terpreted as follows: If there is a vacuum relation Ri in a
CQ Q, then every remaining relation must be dominated
by Ri, therefore ADP(Q,D, k) is poly-time solvable by The-
orem 5.1.

5.2.3 Strand
The remaining case is one where on the output attributes,

the non-dominated relations are hierarchical and on the non-
output attributes, there is no triad-like structure. These
two conditions guarantee poly-time solvability for full and
Boolean CQs respectively. But, interestingly, when appear-
ing together in a general CQ, they no longer guarantee
poly-time solvability. For example, the CQ Q(A,B,C) : −
R1(A,B,E), R2(A,C,E) is NP-hard while bothQ(A,B,C) :
− R1(A,B), R2(A,C) and Q() : −R1(E), R2(E) are poly-
time solvable. To characterize this class of queries, we in-
troduce our third hard structure that we call a strand:

Definition 5.9 (strand). A strand is a pair of non-
dominated relations Ri, Rj ∈ rels(Q) such that (1) head(Q)
∩attr(Ri) 6= head(Q)∩attr(Rj);(2) (attr(Ri)∩attr(Rj))−
head(Q) 6= ∅.

The reason why the strand structure makes the ADP prob-
lem hard can be explained by the procedure IsPtime. Con-
sider any CQ with such a strand structure with Ri, Rj . Af-
ter applying two simplification steps, Ri, Rj will be in the
same connected subquery Q0, since attributes in (attr(Ri)∩
attr(Rj))−head(Q) are not universal and therefore couldn’t
have been removed by IsPtime. Moreover, Q0 is non-Boolean,
since attr(Ri) ∩ head(Q) 6= attr(Rj) ∩ head(Q) and there-
fore, there is at least one non-universal output attribute.
Next, we prove that there is no vacuum relation in Q0. Sup-
pose R` becomes vacuum in Q0. Observe that attr(R`) ⊆
head(Q) and attr(R`) ⊆ attr(Rh) for every relation Rh ∈
attr(Q0). Since Ri is not dominated by R`, there must
exist another relation Rk ∈ rels(Q) − {Ri, Rj} such that
attr(R`) − attr(Rk) 6= ∅ and (attr(Ri) ∩ attr(Rk)) −
attr(R`) 6= ∅. Note thatRk is not inQ0; otherwise, attr(R`)
− attr(Rk) = ∅. In this case, (attr(Ri) ∩ attr(Rk)) −
attr(R`) = ∅, coming to a contradiction. Therefore, the
IsPtime algorithm will go to “others”, and return false for
Q0, as well as for Q. This allows us to claim our third hard
case: if a strand exists, then CQ is NP-hard.

5.3 Sketch of Proof of Theorem 5.1
So far, we have defined three hard structures for general

CQs, any one of which makes the ADP problem NP-hard.
We now sketch the main ideas in the proof of Theorem 5.1;
the detailed proof is in the full version [15]. This proof uses
Theorem 4.1 by mapping each of the NP-hard cases in The-
orem 4.1 to the existence of a hard structure as defined by
Theorem 5.1, and vice-versa. But, interestingly, this map-
ping is not one-one in the sense that multiple cases in the
procedural dichotomy established by Theorem 4.1 map to
same case in the structural dichotomy of Theorem 5.1, and
vice-versa. This lends further credence to our assertion that
the procedural dichotomy of the previous section is not suf-
ficient by itself to explain the structural reasons behind the

7

Strand

head join of non-
dominated relations

Non-hierarchical

Mapping Hard Structure

Qpath

Qswing

Qseesaw

Case 1

Case 2

Case 3

Figure 6: Correspondence between the hard query on

which IsPtime falling into “other” bucket in Figure 3, the

core query it maps to (the left) and the hard structure

it contains (the right).

NP-hardness or poly-time solvability of the ADP problem for
individual CQs.

We first point out that the two simplification steps in the
IsPtime procedure preserve the existence of hard structures.

Lemma 5.10. Let A be a universal attribute in Q. Then,
there is a hard structure in Q if and only if there is a hard
structure in Q−A.

Lemma 5.11. Let Q1, Q2, · · · , Qs be the connected sub-
queries of Q. Then, there is a hard structure in Q if and only
if there is a hard structure in Qi for some i ∈ {1, 2, · · · , s}.

When neither of the simplification steps can be applied,
IsPtime(Q) ends up with three cases. If there is a vacuum
relation in Q, say Ri, IsPtime(Q) returns true. In this case,
Q does not contain any hard structure as Ri is the only
endogenous and non-dominated relation. If Q is boolean,
IsPtime(Q) returns false if and only if it contains a triad.
Then, we are left with the case when IsPtime(Q) goes into
the “Others” bucket. Each core query shown in Section 4.2.1
contains hard structure; more specifically, the head join of
non-dominated relations in Qpath is non-hierarchical, and
both Qswing and Qseesaw contain a strand. In general, we can
show the existence of hard structures for Q falling into one
of the three cases in Figure 4. The correspondence between
different cases of the procedural and structural characteri-
zations are shown in Figure 6.

6. APPROXIMATIONS
In this section, we discuss approximations for ADP(Q,D, k)

when it is NP-hard.

6.1 Full CQs
We first consider full CQs, on which ADP problem can be

related to the Partial Set Cover problem (k′-PSC).

Definition 6.1. Given a set of elements U , a family of
subsets S ⊆ 2U , and a positive integer k′, the goal of the
Partial Set Cover problem is to pick a minimum collection
of sets from S that covers at least k′ elements in U .

Observe that ADP(Q,D, k), where the goal is to pick the
smallest number of input tuples that intervene on at least k
output tuples, can be modeled as a Partial Set Cover prob-
lem as follows. Sets correspond to input tuples from rela-
tions in the body of Q and elements to output tuples in
Q(D). The set corresponding to an input tuple comprises
all elements corresponding to output tuples that are deleted
on the deletion of the input tuple. Also, k′ = k. Addi-
tionally, if there are p relations in the ADP(Q,D, k) instance,
then every element belongs to at most p sets. (A formal

description of this reduction and approximation-preserving
property are left to the full version [15].)

It is known that the Partial Set Cover problem admits
greedy and primal-dual algorithms with approximation fac-
tors of O(log k) and p respectively [14]. Hence, we get the
same results for the ADP problem.

Theorem 6.2. For a full CQ Q with p relations, any in-
stance D and integer k, ADP(Q, k,D) admits O(log k) and
p-approximations.

This implies that if the query has constant size, i.e., p is
a constant, every full CQ admits a constant-factor approxi-
mation for the ADP problem.

6.2 Inapproximability of General CQs
The situation, however, is quite different for general CQs.

We first observe that obtaining even sub-polynomial approx-
imations for the ADP problem in general is unlikely. In par-
ticular, on Qswing(A) : R2(A,B), R3(B), which is the core
hard query in Section 4.2.1, we show the following hardness:

Lemma 6.3. Under some mild cryptographic assumptions,
the ADP(Qswing, D, k) problem with |D| = n is hard to ap-
proximate within Ω(nε) factor for some constant ε > 0.

Recall that we established NP-hardness of ADP(Qswing, D, k)
via a reduction from the k-minimum coverage (KMC) prob-
lem. As shown in the full version [15], this reduction is also
approximation-preserving, which implies the above lemma
via known hardness results for the KMC problem [2, 8, 7].

While this rules out the possibility of approximation al-
gorithms in general for the ADP problem, there are several
query classes on which we had shown NP-hardness of the
problem but their approximability is still open. This in-
cludes simple CQs such asQseesaw(A) : R1(A), R2(A,B), R3(B).
We leave the precise classification of query classes accord-
ing to approximability of the ADP problem as an interesting
direction for future work.

7. ALGORITHMS AND OPTIMIZATIONS
The framework of our poly-time algorithm, which returns

the exact solution for “easy” queries and a heuristic for hard
queries, is described as ComputeADP in Algorithm 1. It
builds upon the algorithm for the Resilience problem [12],
which is a special case of the ADP problem. Our algorithm
recursively calls itself through Universal and Decompose
procedures. For poly-time solvable CQs, it only uses the first
four cases: this follows the proof of Theorem 4.1 by applying
the two simplifications repeatedly until it becomes a Boolean
query or contains a vacuum relation. Our first optimization
is to include a new base case that we call singleton. If the
conditions of this case (we describe them below) are satis-
fied, then a simple algorithm Singleton is directly applied
instead of continuing to apply the two simplification steps.
In addition to computing the optimal solution for poly-time
solvable CQs, Algorithm 1 also generates a feasible solu-
tion for NP-hard CQs. In this case, it alternately applies
these two simplification steps until it becomes Boolean or
goes to the “others” category in Figure 3. We eventually in-
voke an approximate procedure GreedyForCQ on the non-
Boolean CQ when neither simplification step can be applied
any more. Our second optimization is a smarter way of solv-
ing the recurrent formula for these two simplification steps,

8

Algorithm 1: ComputeADP(Q,D, k)

1 If Q is Boolean return Boolean(Q,D, k);

2 ElseIf Q is a singleton return Singleton(Q,D, k);

3 ElseIf Q has universal attribute then Universe(Q,D, k);

4 ElseIf Q is disconnected then Decompose(Q,D, k);

5 Else return GreedyForCQ(Q,D, k);

as shown in Universe(Q,D, k) and Decompose(Q,D, k).
Note that the simplification steps involve large dynamic pro-
grams; so, this optimization provides significant scalability
in practice. Both poly-time solvable and NP-hard queries
benefit from the improvement of two simplification steps.

In the recursion tree of ComputeADP, each leaf node
(Boolean, Singleton and GreedyForCQ) can be com-
puted in poly-time and internal node (Universe and De-
compose) can be built upon its children in poly-time. Also,
there are O(1) nodes in this recursion tree, since the query
size (in terms of number of attributes and relations) is con-
stant and each recursive call decreases the query by at least
one relation or attribute. Hence, we get an poly-time algo-
rithm overall. All omitted proofs and pseudocodes in this
section are in the full version [15].

7.1 Singleton
We first lay out the conditions of this new base case for a

poly-time solvable CQ:

Definition 7.1 (Singleton). A CQ Q is singleton, if
there exists a relation Ri ∈ rels(Q) such that (1) attr(Ri) ⊆
attr(Rj) holds for every other relation Rj ∈ rels(Q); and
(2) either attr(Ri) ⊆ head(Q) or head(Q) ⊆ attr(Ri).

Note that the execution of IsPtime can also be modeled
as recursion tree, where each leaf node is either a Boolean
query or contains vacuum relation, and each internal node
corresponds to one simplification step. On this recursion
tree, we observe that for a poly-time solvable CQ Q, each
leaf (not root) node containing a vacuum relation must have
an ancestor that is a singleton query. So, it suffices to re-
place the vacuum relation base case with the singleton. The
detailed proof, algorithm, and pseudocode are given in [15].

7.2 Universe and Decompose
Decompose(Q,D, k). AssumeQ has s connected subqueries,
Q1, Q2, · · · , Qs. The divide-and-conquer strategy will first
compute ADP(Qi, D, ki) for each subquery Qi over ki, and
then find an optimal combination of k1, k2, · · · , ks by enu-
meration over Θ(ks) solutions, which becomes expensive for
large s. We give an optimized algorithm.

Let Opt[i][j] denote the minimum number of input tuples
to remove at least j output tuples from subquery×ij=1Qj(D).
Opt[i][j] can be computed using the following dynamic pro-
gram: Opt[i][j] =

min
k1,k2∈K(i,j)

Opt[i− 1][k1] + ComputeADP(Qi, D, k2)

where K(i, j) = {k1, k2 : k1|Qi(D)| + k2
∏i−1
`=1 |Q`(D)| −

k1k2 ≥ j, k1, k2 ∈ Z+} and Algorithm 1 is invoked for solv-
ing ADP(Qi, D, k2). To remove at least j output tuples from
×ij=1Qj(D), we remove k1 output tuples from first i − 1

queries and k2 output tuples from Qi(D), the total num-

ber of results removed is k1|Qi(D)| + k2
∏i−1
`=1 |Q`(D)| −

k1k2 since results across subqueries are joined by Cartesian
product. Thus, after recursively computing the solution to
ADP(Qi, D, k2) for each subquery Qi over all values of k2, the
recurrence formula can be solved in O(s · k3) = O(|Q| · k3)
time since there are O(sk) cells in the two-dimensional data
structure Opt[i][j] and each can be computed in O(k2) time.

Universe(Q,D, k). Let A be an universal attribute in Q.
The input instance D is partitioned into D1, D2, · · · , Dg cor-
responding to possible combinations of values a1, a2, · · · , ag
over A. In Di, each tuple t has πAt = ai. Note that the
query result Q(D) is a disjoint union of the subquery results
Q(D1), Q(D2), · · · , Q(Di).

Let Opt[i][s] denote the minimum number of input tuples
that have to be removed in order to remove at least s output
tuples from Q(D), under the constraint that the input tuples
can only be chosen from D1 to Di. Using this notation, we
can now write the following dynamic program: Opt[i][s] =

s

min
m=0

{
Opt[i− 1][s−m] + ComputeADP(Q,Di,m)

}
.

where Algorithm 1 is revoked for solving the ADP(Q,Di,m)
over 1 ≤ i ≤ g and 0 ≤ m ≤ s.

When there are more than one universal attributes, they
should be removed as one “combined” attribute, instead of
one by one. Let A1, A2, · · · , Ah be the universal attributes
in Q. Assume all subproblems ADP(Q,Di, j) over 1 ≤ i ≤ g
and 1 ≤ j ≤ k have been computed. Then, removing A1,
A2, · · · , Ah one by one takes O(k · |πA1,A2,··· ,AhQ(D)|) time
while removing them as whole (say in index ordering) takes

O(k ·
∑h
`=1 |πA1,··· ,A`Q(D)|) time. Our experiments show

this difference in practice.

7.3 Greedy Heuristics
GreedyForCQ(Q,D, k): For many simple queries, the ADP

problem is NP-hard, and is even hard to approximate im-
plied by the results in Section 6. The prime-dual approxi-
mation algorithm [14] for full CQs mentioned in Section 6.1
is not scalable since the size of linear programming would
become very large, and not applicable to CQs with projec-
tions. So, we give a greedy heuristic for handling all NP-hard
CQs when neither simplification steps can be applied (pseu-
docode is in [15]). It greedily chooses a tuple which removes
the maximum number of output tuples among the remain-
ing ones in every step (like the approximation algorithm for
the set cover problem). Moreover, we can narrow our scope
to tuples in endogenous relations in the greedy algorithm.
Note that GreedyForCQ achieves O(log k)-approximation
for full CQs, but there is no theoretical guarantees on the
approximation ratio when projection exists.

DrasticGreedyForFullCQ(Q,D, k): In the heuristic above,
however, computing the “profit” for all input tuples from en-
dogenous relations after every one input tuple is removed is
expensive in practice. For full CQs, we propose a more ‘dras-
tic’ greedy solution where we remove input tuples only from
one endogenous relation (goes over all endogenous relations
and picks the one giving smallest cost, pseudocode in [15]).
This significantly improves the efficiency in our experiments,
since the profits are computed for all input tuples only once
(since different tuples in the same relation remove disjoint
full join results), but theoretically the approximation ratio

9

is no longer guaranteed. Moreover, this strategy fails on
CQs with projection. The reason is that input tuples from
the same relation do not necessarily remove distinct query
results, thus adding their individual profits together is not
equivalent to the profit of their union.

7.4 Supporting Selection Operator
So far, we focused on the class of CQs only with project

and join operators. In fact, our algorithm also supports a
larger class of CQs involving selection operator (when the
domain of some of the attributes is restricted to be con-
stant). The class of conjunctive queries with selections can
be described as

Q(A) : −σθ1R1(A1), σθ2R2(A2), · · · , σθpRp(Ap)

where θi is a set of predicates each in form of A = a for some
attribute A ∈ A and value a. The result of σθiRi(Ai) is the
set of tuples in Ri satisfying all predicates in θi. Note that
we do not have any selection in the head, since any selection
in the head can be pushed down to relations in the query
body. An attribute is selected if it appears in any selection;
and unselected otherwise. Let Aθ ⊆ A be the set of selected
attributes in Q. Here, we also don’t include any self-joins,
i.e., each Ri in Q is distinct.

Lemma 7.2. For a CQ Q with selection predicates θ, the
ADP(Q,D, k) is NP-hard if and only if ADP(Q−Aθ , D, k) is
NP-hard, where Q−Aθ is the residual query after removing
selected attributes Aθ from Q.

Interestingly, for the ADP problem, the polynomial solv-
ability of a CQ with selections is equivalent to that of the
residual query on the unselected attributes. This is formally
stated in Lemma 7.2 (proved in the full version [15]).

8. EXPERIMENTS
In this section, we evaluate the running time, scalability,

and quality of our ComputeADP algorithm, and compare
it with other baselines.

Algorithms: In our plots, we call the exact algorithm
using ComputeADP for easy (poly-time) queries as “Ex-
act”. For hard queries, and also for easy queries for scala-
bility, we have implemented two versions of ComputeADP
embedded with GreedyForCQ and DrasticGreedyFor-
FullCQ separately, shorted as “Greedy” and “Drastic”.
We also implemented a baseline brute-force algorithm called
“BruteForce”, which enumerates all subsets of input tu-
ples, computes the number of query results that can be re-
moved by each subset (by invoking a SQL query), and finds
the minimum one among which removes at least k results.

Reporting vs. counting versions: Wherever applica-
ble and feasible, we report the running time for both count-
ing version, when the goal is to only count the minimum
number of input tuples to remove to achieve the desired
effect, and the reporting version, which reports the actual
input tuples in one such solution. Note that for some of our
motivating examples, e.g., for understanding robustness, the
counting version suffices.

Setup: We implemented our algorithms in JavaSE-1.8
with the database stored in PostgreSQL 10.12. The experi-
ments were performed on MacOS, with 16GB of RAM and
Intel Core i7 2.9 GHz processor. All codes are public at [1].

8.1 Datasets and Queries
TPC-H dataset and queries: The TPC-H dataset

has three relations: Supplier(S:NK, SK), PartSupp(PS:SK,
PK), LineItem(L:OK, SK, PK). Consider the following two
queries: (1) Remove least number of orders or suppliers so
that at least ρ% trading records can be restricted. (2) The
same query but for the specific PartKey = 13370. They
can be characterized by two problems ADP(Q1, D, k) and
ADP(σθQ1, D, kθ) respectively, where

• Q1(NK, SK, PK, OK):-Supplier(S:NK, SK), PartSupp
(PS:SK, PK), LineItem(L:OK, PK), θ : PK = 13370,
kθ = ρ · |σθQ(D)| and k = ρ · |Q(D)|, where ρ fraction
of outputs are removed.

As shown in Lemma 7.2, the problem ADP(σθQ1, D, k) is
poly-time solvable with exact optimal solution returned, while
the problem ADP(Q1, D, k) is NP-hard with only heuristic so-
lution returned, by ComputeADP.

SNAP dataset and queries: We adopt the common
ego-networks from SNAP (Stanford Network Analysis Project)
[19] for Facebook, where an ego-network of a user is a set
of “social circles” formed by this user’s friends [20]. This
dataset consists 10 ego-networks, 4233 circles, 4039 nodes,
and 88234 edges. We choose the network around user 414
which consists of 7 circles, 150 nodes and 3386 edges. We
further create tables Ri(A,B) for i ∈ [4] and insert Ej into
Ri if the rank of Ej mod 4 = i. All edges are bi-directed.
We evaluate three different queries on this dataset as below:

• Q2(A,B,C,D) : −R1(A,B), R2(B,C), R3(C,D)

• Q3(A,B,C) : −R1(A,B), R2(B,C), R3(C,A)

• Q4(A,C,E,G) : −R1(A,B), R2(B,C), R3(E,F), R4(F,G).

• Q5(A,B,C) : −R1(A,E), R2(B,E), R3(C,E)

which are commonly used in community detection or friend
recommendation over social networks. For instance, if three
relations R1, R2, R3 denote different types of connections
(work, personal, or online acquaintances), Q2 finds a path of
length three, Q3 finds a triangle, Q4 finds a pair of length-2
connection, and Q5 captures a common friend. Note that
all these four queries are NP-hard by Theorem 4.1, so Com-
puteADP only returns heuristic results for them.

8.2 Scalability
Poly-time query: We evaluate ADP(σθQ1, D, kθ) on the

TPC-H dataset with different input sizes N =1k, 10k, 100k,
1M, 10M, which denotes the number of survived tuples after
selection. We use different fractions ρ = 0.1, 0.25, 0.5, 0.75.
Figure 7 display the results for both reporting and counting
versions. The running time increases with increase of input
data size and the ρ. Since the counting version only performs
computation on numbers in dynamic programming, it uses
much less memory and behaves much more scalable than the
reporting version does. Moreover, as a remedy for reporting
results when the data size becomes large, we also test the
Greedy and Drastic on σθQ1 (by directly invoking Line 5
in Algorithm 1), whose running time is much smaller than
the exact algorithm as shown in Figure 8. Meanwhile, we
also show the quality of these three techniques in Figure 9.
All of them coincide due to the data distribution for σθQ1,
which implies that Greedy and Drastic also find optimal
solutions. But Greedy is not as scalable as Drastic to
larger dataset with input size 100K or more.

10

103 104 105 106 107

Input size

101

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Reporting, =10%
Reporting, =25%
Reporting, =50%
Reporting, =75%

Counting, =10%
Counting, =25%
Counting, =50%
Counting, =75%

Figure 7: Running Time: σθQ1

(easy) exactly (count/report).

103 104 105 106 107

Input size

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Exact, =10%
Exact, =25%
Exact, =50%
Exact, =75%

Figure 8: Running Time: report-

ing σθQ1 (easy) by heuristics.

103 104 105 106 107

Input size

102

103

104

105

106

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic and exact, =10%
Drastic and exact, =25%
Drastic and exact, =50%
Drastic and exact, =75%

Figure 9: Quality: σθQ1 (easy) by

heuristics.

103 104 105 106 107

Input size

101

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 10: Running Time: re-

porting Q1 (hard) by heuristics.

103 104 105 106 107

Input size

101

102

103

104

105

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 11: Quality: Q1 (hard) by

heuristics.

100 200 300 400 500
Input size

101

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least 10% ratio output results
BruteForce
Greedy
Drastic

Figure 12: Running Time: brute-

force v.s. heuristics for Q1 (hard).

100 200 300 400 500
Input size

100

2 × 100

3 × 100

Nu
m

be
r o

f t
up

le
s r

em
ov

ed

Remove at least 10% ratio output results
BruteForce
Greedy
Drastic

Figure 13: Quality: brute-force

v.s. heuristics for Q1 (hard).

0.2 0.4 0.6 0.8
Ratio

102

103

104

105

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, Q2
Greedy, Q3
Greedy, Q4
Greedy, Q5
Drastic, Q2
Drastic, Q3

Figure 14: Running Time: Q2,

Q3, Q4, Q5 (hard) by heuristics.

0.2 0.4 0.6 0.8
Ratio

100

101

102

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, Q2
Greedy, Q3
Greedy, Q4
Greedy, Q5
Drastic, Q2
Drastic, Q3

Figure 15: Quality: Q2, Q3, Q4,

Q5 (hard) by heuristics.

Hard query: We next evaluate ADP(Q1, D, kθ) on the
TPC-H dataset with input sizes N =1k, 10k, 100k, 1M,
10M and ρ = 0.1, 0.25, 0.5, 0.75 using Greedy and Dras-
tic separately. Observe that since Drastic only computes
the “profit” for all input tuples through a SQL query once,
while Greedy needs to update these statistics once an input
tuple is removed. Thus, Drastic takes much less time than
Greedy, as shown in figure 10. Meanwhile, we also compare
the quality of solutions returned by these two heuristics, as
shown in Figure 11. Due to the data distribution (which
is varied in Section 8.4), Greedy and Drastic have the
same quality when data size is smaller than 100K. However,
Greedy is not scalable to larger dataset and quality results
are only shown for Drastic in Figure 11.

Comparison with brute-force: Next, we evaluate the
BruteForce algorithm on the TPC-H dataset for the NP-
hard query ADP(Q1, D, k) with input size N = 500 and ρ =
0.1. The straightforward brute-force implementation does
not work even on such a small dataset, since it iterates over

all subsets of input tuples and issues as many as 2500 SQL
queries in total. We use an optimization here by iterating
all subsets in increasing order of their sizes, until a feasible
solution (removing at least k query results) is found.

We compare the optimized BruteForce with two heuris-
tics. All three algorithms have their quality coinciding for
this small dataset, as shown in Figure 13. But heuristics
significantly improve the running time of BruteForce, as
shown in Figure 12. The BruteForce did not stop in sev-
eral hours for N = 1000 or ρ = 0.2.

8.3 Complexity of Queries
For each of Q2, Q3, Q4, Q5, we ran our experiments on the

SNAP dataset and varied the fraction of query results to be
removed (denoted ρ) over {0.1, 0.25, 0.5, 0.75}. We evalu-
ated Greedy and Drastic as follows: First, we invoked
GreedyForCQ directly on Q2, Q3, Q5 since neither of the
simplification steps can be applied to these queries. For Q4,
Greedy first decomposes it into two subqueries Q41(A,C) :

11

103 104 105 106

Input size

101

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 16: α = 0 (hard)

103 104 105 106

Input size

101

102

103

104

105

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 17: α = 0 (hard)

103 104 105 106

Input size

101

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 18: α = 1 (hard)

103 104 105 106

Input size
100

101

102

103

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 19: α = 1 (hard)

103 104 105 106

Input size

101

102

103

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Exact, =10%
Exact, =25%
Exact, =50%
Exact, =75%

Figure 20: α = 0 (easy)

103 104 105 106

Input size

101

102

103

104

105
Nu

m
be

r o
f t

up
le

s t
o

re
m

ov
e

Remove at least ratio output results
Exact, =10%
Exact, =25%
Exact, =50%
Exact, =75%

Figure 21: α = 0 (easy)

103 104 105 106

Input size
101

102

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Exact, =10%
Exact, =25%
Exact, =50%
Exact, =75%

Figure 22: α = 1 (easy)

103 104 105 106

Input size
100

101

102

103

104

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Exact, =10%
Exact, =25%
Exact, =50%
Exact, =75%

Figure 23: α = 1 (easy)

−R1(A,B), R2(B,C) and Q42(E,G) : −R3(E,F), R4(F,G)
using Decompose, and handles them using GreedyForCQ
separately. Next, we invoked DrasticGreedyForFullCQ
on Q2, Q3 directly. All these running times are displayed in
Figure 14. Note that Drastic cannot be applied to Q4, Q5

with projection; hence, these are not in Figure 14. The
quality of these heuristics is displayed in Figure 15.

The running time of Drastic depends on (i) the number
of endogenous relations, (ii) computing the profits for all tu-
ples in an endogenous relation by SQL queries, (iii) sorting
the tuples by profit, and (iv) finding tuples with largest prof-
its whose profits add up to at least k. Note that Q2, Q3 are
executed on the same dataset and the number of input tu-
ples to be removed are almost the same (see Figure 15). So
Figure 14 displays the difference in runtimes for executing
the SQL queries for Q2, Q3.

The running time of Greedy depends on (i) the number
of iterations of the while loop, which is exactly the number of
input tuples to be removed, (ii) the number of SQL queries
for each iteration of the while loop, which is the number of
endogenous relations, and (iii) the time for executing one
SQL query. On Q2, Q3, Q5, Greedy removes almost the
same number of input tuples as shown in Figure 15. So,
Figure 14 displays the difference in runtimes for executing
SQL queries for Q3 and Q2, Q5 respectively. As mentioned,
Greedy needs to solve a dynamic program in Decompose
that is much slower than running GreedyForCQ for each
connected component. Thus, Q4 has a larger running time
even though it removes fewer input tuples.

8.4 Data Distribution
We study the performance of ComputeADP for a poly-

time solvable singleton query Q6(A,B) : −R1(A), R2(A,B)
and an NP-hard queryQpath(A,B) : −R1(A), R2(A,B), R3(B)
on various data distributions, where the degrees of values
from A or B in relation R2(A,B) is varied to obtain the dif-
ferent distributions. We used the Zipfian distribution, where
the frequency of the i-th distinct key is proportional to i−α.
The parameter α ≥ 0 controls the skewness of the distribu-
tion: larger α means larger skew. We fix the distribution

of degrees for values in attribute B as uniform and vary the
skewness of degrees of values in attribute A by setting α = 0
or 1. The results for Qpath are shown in Figure 16–19, and
those for Q6 are shown in Figure 20–23. We also tested
other values of α, which are reported in the full version [15].

For every fixed value of α, the running time as well as the
size of solutions returned by any algorithm increase with the
input size and the value of ρ. If both the input size and ρ
are fixed, the size of the solution decreases with increasing
α. This is because on a skewed instance, the same number
of output tuples can be removed by removing fewer input
tuples. The running time for Drastic and Exact stays al-
most the same since computing the profits for input tuples
is the most costly step, independent of the size of the solu-
tion. However, the running time of Greedy decreases with
the size of the solution, which is affected by α.

Effect of optimizations. We also evaluated the effect
of our optimizations on different queries; this is reported in
the full version [15].

9. FUTURE WORK
Several open questions remain. First, it would be inter-

esting to study the ADP problem beyond CQs. In particular,
many natural queries involve self-joins and/or aggregates
like sum, for which the observations of this paper do not ap-
ply. It is also natural to consider scenarios where all input
tuples are not equivalent in terms of the cost of removing
them. As a first step, one might want to consider a scenario
where only a subset of input tuples can be removed, and the
remaining input tuples cannot be deleted. Investigating the
approximability of the ADP problem is another interesting
research direction. Although we showed some preliminary
results in this context, obtaining an exact characterization
of the approximability of this problem for individual queries,
even for the special case of the Resilience problem, remains
open. A related question is that of the parameterized com-
plexity of ADP with respect to k for full CQs. While we
showed that ADP admits a poly-time algorithm for fixed k,
obtaining an FPT algorithm for the problem remains open.

12

10. REFERENCES

[1] https://github.com/ssz1997/GDP.git.

[2] B. Applebaum. Pseudorandom generators with long
stretch and low locality from random local one-way
functions. SIAM Journal on Computing,
42(5):2008–2037, 2013.

[3] F. Bancilhon and N. Spyratos. Update semantics of
relational views. ACM Trans. Database Syst.,
6(4):557–575, Dec. 1981.

[4] P. Buneman, S. Khanna, and W.-C. Tan. On
propagation of deletions and annotations through
views. In Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’02, pages 150–158, 2002.

[5] B. Caskurlu, V. Mkrtchyan, O. Parekh, and
K. Subramani. Partial vertex cover and budgeted
maximum coverage in bipartite graphs. SIAM J.
Discrete Math., 31(3):2172–2184, 2017.

[6] J. Chen and I. A. Kanj. Constrained minimum vertex
cover in bipartite graphs: complexity and
parameterized algorithms. Journal of Computer and
System Sciences, 67(4):833–847, 2003.

[7] E. Chlamtác, M. Dinitz, C. Konrad, G. Kortsarz, and
G. Rabanca. The densest k-subhypergraph problem.
SIAM Journal on Discrete Mathematics,
32(2):1458–1477, 2018.

[8] E. Chlamtáč, M. Dinitz, and Y. Makarychev.
Minimizing the union: Tight approximations for small
set bipartite vertex expansion. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 881–899. SIAM, 2017.

[9] G. Cong, W. Fan, and F. Geerts. Annotation
propagation revisited for key preserving views. In
Proceedings of the 15th ACM International Conference
on Information and Knowledge Management, CIKM
’06, pages 632–641, 2006.

[10] N. N. Dalvi and D. Suciu. The dichotomy of
probabilistic inference for unions of conjunctive
queries. J. ACM, 59(6):30:1–30:87, 2012.

[11] U. Dayal and P. A. Bernstein. On the correct
translation of update operations on relational views.
ACM Trans. Database Syst., 7(3):381–416, Sept. 1982.

[12] C. Freire, W. Gatterbauer, N. Immerman, and
A. Meliou. The complexity of resilience and
responsibility for self-join-free conjunctive queries.
PVLDB, 9(3):180–191, 2015.

[13] C. Freire, W. Gatterbauer, N. Immerman, and
A. Meliou. New results for the complexity of resilience
for binary conjunctive queries with self-joins. arXiv
preprint arXiv:1907.01129, 2019.

[14] R. Gandhi, S. Khuller, and A. Srinivasan.
Approximation algorithms for partial covering
problems. Journal of Algorithms, 53(1):55–84, 2004.

[15] X. Hu, S. Patwa, S. Sun, D. Panigrahi, and S. Roy.
Aggregated deletion propagation for counting
conjunctive query answers,
https://users.cs.duke.edu/~xh102/ADP.pdf.

[16] B. Kimelfeld. A dichotomy in the complexity of
deletion propagation with functional dependencies. In
Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems, PODS 2012, Scottsdale, AZ,
USA, May 20-24, 2012, pages 191–202, 2012.

[17] B. Kimelfeld, J. Vondrák, and R. Williams.
Maximizing conjunctive views in deletion propagation.
In Proceedings of the 30th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2011, June 12-16, 2011,
Athens, Greece, pages 187–198, 2011.

[18] B. Kimelfeld, J. Vondrák, and D. P. Woodruff.
Multi-tuple deletion propagation: Approximations and
complexity. PVLDB, 6(13):1558–1569, 2013.

[19] J. Leskovec and A. Krevl. Snap datasets: Stanford
large network dataset collection. June 2014.

[20] J. Leskovec and J. J. Mcauley. Learning to discover
social circles in ego networks. In Advances in neural
information processing systems, pages 539–547, 2012.

[21] E. Livshits, B. Kimelfeld, and S. Roy. Computing
optimal repairs for functional dependencies. In
Proceedings of the 37th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, Houston, TX, USA, June 10-15,
2018, pages 225–237, 2018.

[22] L. Mathieson and S. Szeider. The parameterized
complexity of regular subgraph problems and
generalizations. In Proceedings of the fourteenth
symposium on Computing: the Australasian
theory-Volume 77, pages 79–86, 2008.

[23] A. Meliou, W. Gatterbauer, K. F. Moore, and
D. Suciu. The complexity of causality and
responsibility for query answers and non-answers.
PVLDB, 4(1):34–45, 2010.

[24] A. Meliou, W. Gatterbauer, and D. Suciu. Reverse
data management. PVLDB, 4(12):1490–1493, 2011.

[25] A. Meliou and D. Suciu. Tiresias: the database oracle
for how-to queries. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, SIGMOD 2012, Scottsdale, AZ, USA, May
20-24, 2012, pages 337–348, 2012.

[26] S. Roy, L. Orr, and D. Suciu. Explaining query
answers with explanation-ready databases. PVLDB,
9(4):348–359, 2015.

[27] S. Roy and D. Suciu. A formal approach to finding
explanations for database queries. In International
Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, pages
1579–1590, 2014.

[28] M. Y. Vardi. The complexity of relational query
languages. In STOC, pages 137–146, 1982.

[29] S. A. Vinterboa. A note on the hardness of the
k-ambiguity problem. 2002.

[30] E. Wu and S. Madden. Scorpion: Explaining away
outliers in aggregate queries. PVLDB, 6(8):553–564,
2013.

13

https://github.com/ssz1997/GDP.git
https://users.cs.duke.edu/~xh102/ADP.pdf

APPENDIX
A. IsPtime IN SECTION 4

Algorithm 2: IsPtime(Q)

1 Remove all universal attributes from each relation in
Q;

2 if head(Q) = ∅ then
3 if there is no triad structure in Q then
4 return true

5 else
6 if there exists a relation Ri with attr(Ri) = ∅

then
7 return true

8 else
9 if Q is disconnected then

10 Let Q1, Q2, · · · , Qs be its connected
components;

11 return ∩si=1IsPtime(Qi);

12 return false

B. ENDOGENOUS RELATIONS
To compare our definitions with those from [12], we need

to introduce the following terminologies. In a CQ Q, rela-
tion Rj ∈ rels(Q) is exogenous if there exists another re-
lation Ri 6= Rj ∈ rels(Q) such that attr(Ri) ⊂ attr(Rj),
and endogenous otherwise. It should be noted that if there
are more than one relation defining on the same attributes,
i.e., attr(Ri) = attr(Rj), then we just consider arbitrary
one of them as endogenous and the remaining as exogenous.
In Q() : −R1(A), R2(A,B), R3(B,C), R4(B,C), R5(B,C),
there are two endogenous relationsR1 and any one ofR3, R4, R5.
We generalize their observation on endogenous relations in [12]
to the ADP problem, as stated in Lemma B.1, which will be
used in this paper.

Lemma B.1. For any CQ Q, if ADP(Q,D, k) problem is
poly-time solvable, there exists a solution which only removes
input tuples from endogenous relations.

Proof. Consider an arbitrary solution S for ADP(Q,D, k).
By contradiction, assume tuple t ∈ Rj is removed by S
where Rj is an exogenous relation. Let Ri ∈ rels(Q) be the
endogenous relation such that attr(Ri) ⊂ attr(Rj), and t′

be the tuple such that πattr(Ri)t = t′. If t′ ∈ S, we observe
that S −{t} also removes at least k results from Q(D), con-
tradicting the optimality of S. Otherwise, t′ /∈ S. Then
we claim that S − {t}+ {t′} is also an optimal solution for
ADP(Q,D, k). Applying this argument to each tuple removed
from exogenous relation, we will obtain an optimal solution
which only removes tuples from endogenous solution. Thus
adding the restriction on Q doesn’t change the minimum
number of tuples to be removed for ADP(Q,D, k).

C. PROOF OF LEMMA 4.6
We show the NP-hardness of each problem in Lemma 4.6

separately.

Hardness Proof of Problem (1). With an equivalent
definition, problem (1) is exactly the Partial Vertex Cover
for Bipartite Graphs (PVCB) problem, which is known to be
NP-hard [5].

Definition C.1. The input to the problem is an undi-
rected bipartite graph G(A,B,E) where E is the set of edges
between two sets of vertices A and B, and an integer k. The
goal is to find a subset S ⊆ A∪B of minimum size such that
at least k edges from E have at least one endpoint in S.

Hardness Proof of Problem (2). It is easy to relate
problem (2) to the k-Minimum Coverage (KMC) problem,
which is known to be NP-hard [29].

Definition C.2. Given a universe U , a family S of sub-
sets of U and an integer k, find k subsets from S such that
the size of their union is minimized.

We give a reduction from the KMC problem that takes as
input (U ,S) and k, denoted as KMC(U ,S, k). Moreover, it
can be easily checked that this reduction preserves the ap-
proximation, i.e., if there is an α-approximation algorithm
for the ADP(Qswing, D, k) problem, then there must exist an
α-approximation algorithm for the KMC problem.

Given an instance of the KMC problem, we construct a
bipartite graph G = (A,B,E) as follows. For each element
u ∈ U , we include a vertex bu ∈ B. For each subset S ∈ S,
we include a vertex aS ∈ A. If u ∈ S, we add an edge
(aS , bu) ∈ E. Next we show that the problem KMC(U ,S, k)
has a solution of size ≤ c if and only if the problem (2) has
a solution of size ≤ c.

The“only-if” direction. Suppose we are given a so-
lution S ′ ⊆ S for problem KMC(U ,S, k) of size ≤ c. We
then construct a solution for problem (2) as follows. If
u ∈

⋃
S∈S′ S, then we remove bu from B. This solution

removes at most c vertices from B since |
⋃
S∈S′ S| ≤ c.

Moreover, every vertex aS ∈ A is removed as long as S ∈ S′.
The total number of vertices removed from A is at least k,
thus this is exactly a solution for problem (2) of size ≤ k.

The “if” direction. Suppose we are given a solution
for problem (2) of size ≤ c. We choose k arbitrary vertices
from A which is removed because of the removal of ver-
tices in B, denoted as A′. We then construct a solution for
KMC(U ,S, k) as {S : aS ∈ A′}. It can be easily argued that
|
⋃
S:aS∈A′ S| ≤ c. Suppose not, there must exist at least

one vertex bu for u ∈
⋃
S:aS∈A′ not removed. In this way,

at least one vertex in A′ cannot be removed, coming to a
contradiction.

Hardness Proof of Problem (3). However, to our knowl-
edge, there is no existing result directly implying the hard-
ness of problem (3). We first elaborate it as the Sided-
Constrained Vertex Cover in Bipartite Graphs (SVCB).

Definition C.3. The input to the problem is an undi-
rected bipartite graph G(A,B,E) where E is the set of edges
between two sets of vertices A and B, and an integer c. The
goal is to find a subset S ⊆ A ∪ B of minimum size such
that each edge from E have at least one endpoint in S and
at least c vertices in A are included in S.

A related problem that has been studied is the constrained
minimum vertex cover, which is known to be NP-complete [6],
but with a different settings from SVCB. It asks to find a
minimum vertex cover S ⊆ A ∪ B such that |A ∩ S| ≤ k1
and |B ∩ S| ≤ k2 for some input integer k1, k2. As a side
product, we also first show that SVCB problem is NP-hard
in Lemma C.4, whose proof is given in Appendix D of inde-
pendent interest.

14

Lemma C.4. The SVCB problem is NP-hard.

We give a reduction from the decision version of SVCB

problem that takes input G = (A,B,E) and an integer
c ≤ |A|, denoted as SVCB(G, c). For simplicity, assume each
vertex in G is incident to at least one edge in E. Given an
instance of the SVCB problem, we have the same bipartite
graph G for problem (3). Next we show that SVCB(G, c) has
a solution of size ≤ c′ if an only if the problem (3) with
parameter k = |A| − c has a solution of size ≤ c′ − c.

The“only-if” direction. Suppose we are given a vertex
cover C for the problem SVCB(G, c) of size ≤ c′. Let B1 =
C ∩ B and A1 = C ∩ A, where |A1| ≥ c. As a complement
of C, (A− A1, B −B1) form an independent set of G. This
implies that for each vertex a ∈ A − A1, if (a, b) ∈ E, then
b ∈ B1.

We construct a solution S for problem (3) as follows. We
choose arbitrary |A1| − c vertices from A1, denoted as A2.
Let S = A2 ∪ B1. The size of S can be bounded as |A1| +
|B1|−c = |C|−c′ ≤ c′−c. Moreover, it can be easily checked
that S is a valid solution for problem (3). Each vertex a ∈
A − A1 will be removed, since all of its neightbors are in
B1, which have been removed already. Additional |A1| − c
vertices are also removed from A2. Thus, the total number
of vertices removed from A is |A−A1|+ |A1| − c = |A| − c.

The “if” direction. Suppose we are given a solution
S for the problem (3) with parameter k = |A| − c, of size
≤ c′ − c. Let B1 = S ∩B and A2 = {a ∈ A : (a, b) /∈ E ∀b ∈
B − B1}. We mention two important properties on S first.
(i) If |A2| ≥ |A| − c, then S = B1 with size ≤ c′ − c. (ii) If
|A2| < |A|− c, there must be |S ∩ (A−A2)| ≥ |A|− |A2|− c.
In this case, c′ − c ≥ |S| ≥ |S ∩ (A − A2)| + |B1| ≥ |A| −
|A2| − c+ |B1|, thus c′ ≥ |A| − |A2|+ |B1|.

We construct a solution C for the problem SVCB(G, c) as
follows. If |A2| ≥ |A| − c, choose arbitrary |A2| − |A| + c
vertices from A2 as A3 and set C = (A − A2 + A3, B1).
Otherwise, set C = (A−A2, B1).

Observe that C is a valid vertex cover since (A2, B −B1)
is an independent set of G. It remains to show that |C| ≤ c′
and |C∩A| ≥ c. Note that if |A2| ≥ |A|−c, we have |C∩A| =
|A|− |A2|+ |A3| = c and |C| = |A|− |A2|+ |A3|+ |B1| ≤ c+
c′−c = c′, implied by (i). Otherwise, |C∩A| = |A|−|A2| ≥ c.
Moreover, |C| = |A| − |A2|+ |B1| ≤ c′, implied by (ii).

D. PROOF OF LEMMA C.4
In this part, we prove the NP-hardness of SVCB problem

by showing that the NP-complete problem of CLIQUE in a
regular graph [22] is polynomial time reducible to it, denoted
as REGULAR-CLIQUE.

Recall that the input is an undirected bipartite graph
G(A,B,E) where E is the set of edges between two sets
of vertices A and B, and an integer c ≤ |A|. The goal is to
find a subset S ⊆ A ∪ B of minimum size such that each
edge from E have at least one endpoint in S and at least c
vertices in A are included by S.

Instance Construction. Let G′ = (V ′, E′) be a d-regular
graph, where |V ′| = n and |E′| = m. Let 5 ≤ q ≤ n−1

2
be

an integer. The CLIQUE problem asks whether there exists a
set of q vertices in V ′ such that each pair of vertices chosen
are connected by an edge in E′. We construct an instance
G = (A ∪ B,E) with k1, k2 as follows. Each vertex u ∈
V ′ defines a vertex-block, in forms of a biclique Au × Bu,
where Au ⊆ A contains λ1 vertices and Bu ⊆ B contains λ2

distinct vertices. Moreover, λ1 − λ2 ≥ d. Each edge e ∈ E′
defines a vertex be ∈ B. If vertex u is the endpoint of edge
e in G′, we just add one edge from be to one vertex in Au
with degree λ2. This is always possible since λ1 > d. In our
constructed graph, there is |A| = λ1n, |B| = λ2n + m and
|E| = λ1λ2n+ 2m. Set c = λ1q.

Any λ1, λ2, d satisfying the following the constraints work
for this proof, say, λ1 = 2q(q + 1), λ2 = 2q2, d = 2q.

1. λ1 > max{2q − 1, 1
2
q(q − 1)};

2. λ1 − λ2 ≥ d ≥ 2q;

3. (λ1 − λ2)(n− q) + 1
2
q(q − 1) ≥ m;

4. λ1 ≥ (q − 1) · d;

5. λ2 + 1
2
(q − 1) > 1

2
λ1;

6. λ2 >
1
2
λ1 + 1

2
(q − 1)(d− q);

7. 2m = nd;

8. d ≤ n− 1.

But for generality, we still use λ1, λ2, d for analysis. We will
show that the original graph G′ = (V ′, E′) has a clique of
size q if and only if the bipartite graph G = (A ∪ B,E)
has a vertex cover J such that |J ∩ A| ≥ λ1q and |J | ≤
λ1q + λ2(n− q) +m− 1

2
q(q − 1).

“Yes” instance: If there exists a clique of size q in G′,
we construct the vertex cover as follows. If a vertex u ∈ V ′ is
in the clique, choose Au; otherwise, choose Bu. For an edge
e = (u, u′) ∈ E′, if at least one of u, u′ is not in the clique,
choose eu. It can be easily checked that each edge is covered,
so this is a valid vertex cover. Moreover, |J ∩A| = λ1q and
|J | = λ1q + λ2(n− q) +m− 1

2
q(q − 1).

“No” instance:If there exists no clique of size q in G′,
every vertex cover J of G with |J ∩ A| ≥ λq, must have its
size strictly larger than λ1q+λ2(n− q)+m− 1

2
q(q−1). Let

J∗ be the minimum one among the class of vertex covers
with |J ∩A| ≥ λ1q.

The first observation is that |J∗∩A| = λ1q. By contradic-
tion, assume |J∗∩A| > λ1q. If we can find some u ∈ V ′ with
Au (J∗, then Au ⊆ J∗; for each vertex a ∈ Au ∩ J∗, we
remove a from J∗ and add be to J∗ if there is a edge block be
connected to v. Otherwise, for each u ∈ V ′ with Au∩J∗ 6= ∅,
there is Au ∩ J∗ = Au. In this case, |J∗ ∩ A| = λ1q

′′ with
q′′ > q. For an arbitrary u ∈ V ′ with Au = J∗, we remove
Au from J∗ and add Bu ∪ (

⋃
e∈E′:u∈e be) to J∗. Note that

|Bu ∪ (
⋃
e∈E′:u∈e be)| = |Bu|+ |

⋃
e∈E′:u∈e be| = λ2 +d ≤ λ1.

In this way, we can get a better (at least not worse) vertex
cover while maintaining the constraint that |J∗ ∩A| ≥ λ1q.

Based on J∗, we divide vertices in V ′ into three subsets:

A1 = {u ∈ V ′ : Au − J∗ = ∅};
A2 = {u ∈ V ′ : Au − J∗ 6= ∅, Au ∩ J∗ 6= ∅};
A3 = {u ∈ V ′ : Au ∩ J∗ = ∅};

Note that J∗ has to pick the Bu for every u ∈ A2 ∪A3. We
further consider two cases: (1) |A1| = q; (2) |A1| ≤ q − 1.
Both cases are built on the following common observations.
Consider an edge block be with e = (u, u′). Let aeu ∈ Au
and aeu′ ∈ Au′ be the two vertices incident to be in G. Note
that be /∈ J∗ if and only if aeu ∈ J∗ and aeu′ ∈ J∗.

Case 1: |A1| = q. In this case, |A2| + |A3| = n − q, and
A2 = ∅ since |J∗ ∩ A| = λ1q. For any edge e = (u, u′) ∈ E,
be /∈ J∗ if and only if u ∈ A1 and u′ ∈ A1. Since there is no

15

q-clique in G′, J∗ has size at least λ1q + λ2(n − q) + m −
1
2
q(q − 1) + 1.
Case 2: |A1| ≤ q−1. Consider each edge e = (u, u′) ∈ G′.

Observe that if one of u, u′ is in A3, there must be be ∈ J∗.
We further distinguish three more cases for e when be /∈ J∗.
(i) both u, u′ ∈ A1, be /∈ J∗. Let α be the number of edges
falling into this case. (ii) u, u′ ∈ A2, then J∗ has to choose
both aeu, aeu′ for only exempting eu. (iii) one of u, u′ is in
A1 and the other in A2, say u ∈ A1, u

′ ∈ A2, then J∗ has to
choose aeu′ for exempting be; and the number of such edges
is at most |A1| · d− 2α. Note that J∗ will exempt as many
as edge blocks as possible. With the additional budget of
λ1(q − |A1|) vertices in A2, it will firstly exempt as many
edge blocks in (iii) as possible; and then exempt edge blocks
in (ii). Under the parameter constraint (1), λ1(q − |A1|) ≥
|A1| · d ≥ |A1| · d − 2α for any |A1| ∈ {1, 2, · · · , q − 1}. So
the number of exempted edge blocks is at most

f(|A1|) = α+ |A1| · d− 2α+
1

2

(
λ1(q − |A1|)− (|A1| · d− 2α)

)
=

1

2
|A1| · d+

1

2
λ1(q − |A1|)

In this case, J∗ has size at least λ1q + λ2(n − |A1|) + m −
f(|A1|). To show why it is always strictly larger than λ1q+
λ2(n− q) +m− 1

2
q(q − 1), it suffices to show that

λ2(q − |A1|)− f(|A1|) +
1

2
q(q − 1) > 0

for any |A1| ∈ {0, 1, 2, · · · , q − 1}. Rearranging the inequal-
ity, this is equivalent to show

(λ2 −
1

2
λ1)(q − x) +

1

2
q(q − 1)− 1

2
xd > 0

holds for any x ∈ [0, q − 1]. Note that this is a monotone
function, so it holds for the whole interval [0, q−1] as long as
it holds for both endpoints. For x = 0, it holds if λ2 + 1

2
(q−

1) > 1
2
λ1. For x = q−1, it holds if λ2 >

1
2
λ1+ 1

2
(q−1)(d−q).

Both constraints are implied by the parameter settings.

E. EXAMPLES FOR SECTION 4.2.3
We show an example for each case in Figure 4 separately.

Note that each query falling into the “other” bucket must
have (1) Q contains no universal attributes; (2) Q is non-
boolean; (3) Q contains no vacuum relations; and (4) Q is
connected.

Example E.1. Consider an example query Q1(A,C, F) :
−R1(A,C), R2(B), R3(B,C), R4(C,E, F), with a vacuum re-
lation R2 in head join Q′1(A,C, F) : −R1(A,C), R2(), R3(C),
R4(C,F). In this example, we map attributes A,C, F to A
and B,C to B, yielding a new query Q′′1 (A) : −R1(A), R2(B),
R3(B), R4(A,B), i.e., the Qseesaw query.

If R1(A,C) does not appears in Q1, the same mapping
yields another query Q′′′1 (A) : −R2(B), R3(B), R4(A,B), i.e.,
the Qswing query.

Example E.2. Consider an example query Q2(A,B) : −
R1(A), R2(A,C), R3(C,B), R4(B), where the head join Q′2(A,
B) : −R1(A), R2(A), R3(B), R4(B) is disconnected. For one
connected subquery containing A, we can identify relation
R2 such that A ∈ attr(R2) and attr(R2) ∩ (attr(Q) −
head(Q)) 6= ∅. Similarity, for the other connected sub-
query containing B, we can identify relation R3 such that

B ∈ attr(R3) and attr(R3)∩ (attr(Q)− head(Q)) 6= ∅. In
this case, we map attributes B,C to B, yielding a new query
Q′2(A,B) : −R1(A), R2(A,B), R3(B), i.e., the Qpath query.

If R4(B) does not appear in Q2, we map B to ∗, yield-
ing a new query Q′′2 (A) : −R1(A), R2(A,C), R3(C), i.e., the
Qseesaw query.

If both R1(A), R4(B) does not appear in Q2, we map B
to ∗, yielding a new query Q′′′2 (A) : −R2(A,C), R3(C), i.e.,
the Qswing query.

Example E.3. We show two examples for Case (3.1) and
(3.2) separately.

In (3.1), there exists a pair of relations Ri, Rj ∈ rels(Q)
such that attr(Ri)∩attr(Rj) = ∅. Consider an example full
CQ Q3(A,B,C,E) : −R1(A,C), R2(C,E), R3(E,B). There
exists a pair of relations R1, R3 such that attr(R1)∩attr(R3) 6=
∅. We map attributes A,C to attribute A and B,E to at-
tribute B, yielding a new query Q′3(A,B) : −R1(A), R2(A,B),
R3(B), i.e., the Qpath query.

In (3.2), for every pair of relations Ri, Rj ∈ rels(Q),
attr(Ri) ∩ attr(Rj) ∩ head(Q) 6= ∅. Consider an example
full CQ Q4(A,B,C,E, F) : −R1(A,B,C,E, F), R2(B,C,E), R3(A,C).
We map attributes C,E, F to ∗ and obtain a new query
Q′4(A,B) : −R1(A,B), R2(B), R3(A), i.e., the Qpath query.

F. PROOF OF THEOREM 5.1
We will prove Theorem 5.1 by drawing an equivalence to

Theorem 4.1. For simplicity, when there is a triad-like or
strand structure, or the head join of non-dominated rela-
tions is non-hierarchical in Q, Q is referred to contain hard
structure.

We first show that these two simplification steps in proce-
dure IsPtime preserve the hard structures (Lemma 5.10 and
Lemma 5.11).We then investigate three base cases. Note
that when Q is boolean, there is no triad structure since
head(Q) ∩ attr(Ri) = ∅ for any Ri ∈ rels(Q). The head
join of Q has no attributes, thus always being hierarchical.
On boolean CQ, Theorem 5.1 degenerates to Theorem ??
directly. So, it remains to consider the case when there is a
vacuum relation in Q (Lemma F.1) or IsPtime(Q) goes to
“other” in Figure 3 (Lemma F.2).

Proof of Lemma 5.10. For each relationRi ∈ rels(Q),
letR′i be the corresponding relation inQ−A, with attr(R′i) =
attr(Ri) − {A}. We first mention two important observa-
tions for Q,Q−A: (1) there is a one-to-one correspondence of
non-dominated (resp. endogenous) relations in Q and Q−A,
i.e., Ri is non-dominated (resp. endogenous) if and only R′i
is non-dominated (resp. endogenous); (2) for a full CQ, Q
is hierarchical if and only if Q−A is hierarchical. Both can
be easily checked by definition. .

The “only-if” direction. Suppose Q contains hard
structure, and we prove each case separately.

If there is a triad-structure with a triple of endogenous re-
lations R1, R2, R3 ∈ rels(Q) such that for each pair of rela-
tions, say R1, R2, there exists a path between R1, R2 only us-
ing attributes in attr(Q)−head(Q)−attr(R3). Obviously,
A doesn’t appear on this path since A ∈ attr(R3). Corre-
spondingly, this path between R′1, R

′
2 only uses attributes in

attr(Q−A)−head(Q−A)−attr(R3) = attr(Q)−head(Q)−
attr(R′3). Similar argument applies for R′1, R

′
3 and R′2, R

′
3.

Thus, R′1, R
′
2, R

′
3 form a triad in Q−A.

If there is a strand with a pair of non-dominated rela-
tions R1, R2 ∈ rels(Q) such that (1) head(Q)∩attr(R1) 6=

16

head(Q) ∩ attr(R2); (2) attr(Ri) ∩ attr(Rj)− head(Q) 6=
∅. It can be easily checked that head(Q) ∩ attr(R′1) 6=
head(Q)∩attr(R′2), and attr(R′i)∩attr(R′j)−head(Q−A) =
attr(Ri) ∩ attr(Rj) − head(Q) 6= ∅. Thus, R′1, R

′
2 form a

strand in Q−A.
If the head join of non-dominated relations in Q is non-

hierarchical, removing a universal attribute A from all rela-
tions doesn’t change this property. Thus, the head join of
non-dominated relations in Q−A is also non-hierarchical.

The “if” direction. Suppose Q−A contains hard struc-
ture. This direction can be argued similarly with the “only-
if” direction.

Proof of Lemma 5.11. We first mention two important
observations for a disconnected query: (1) the set of non-
dominated (resp. endogenous) relations in Q is just the dis-
joint union of non-dominated (resp. endogenous) relations
in each subquery; (2) a full join is hierarchical, if each of
its connected subqueries is hierarchical. Both can be easily
checked by definition.

The “only-if” direction. Suppose Q contains hard
structure, and we prove each case separately.

If there is a triad-structure with a triple of endogenous
relations R1, R2, R3 ∈ rels(Q), they must come from the
same subquery, say Qi, since there exists a path between
any pair of them by definition. It can be easily checked that
R1, R2, R3 still form a triad in Qi.

Similarly, if there is a strand with a pair of endogenous
relations R1, R2 ∈ rels(Q), they must come from the same
subquery, say Qi, since they are connected. It can be easily
checked that R1, R2 still form a strand in Qi.

If the head join of non-dominated relations in Q is non-
hierarchical, we can identify two attributes A,B and three
non-dominated relationsR1, R2, R3 such thatA ∈ attr(R1)∩
attr(R2)−attr(R3) andB ∈ attr(R3)∩attr(R2)−attr(R1).
In this way, R1, R2, R3 must come from the same subquery,
say Qi. It can be easily checked that this condition still
holds in Qi, thus being non-hierarchical.

The “if” direction. Suppose Qi contains hard struc-
ture. It can be easily checked that any hard structure in Qi
also exists in Q.

Lemma F.1. For a CQ Q, if there is a vacuum relation,
then Q doesn’t contain any hard structure.

Proof. Let Ri be the vacuum relation. By definition,
every remaining relation Rj ∈ rels(Q)−{Ri} is dominated
by Ri. Thus, there is neither triad-like nor strand struc-
ture in Q. The head join of non-dominated relations in Q
only includes Ri, thus always being hierarchical. Overall, Q
doesn’t contain any hard structure.

Lemma F.2. For a CQ Q, if IsPtime(Q) goes to “other”
in Figure 3, then Q contains hard structure.

Proof. We follow the same proof plan for Lemma 4.5, by
distinguishing the class of CQs characterized by Lemma F.2
into three cases, as illustrated in Figure 4. Recall that any
query characterized by Lemma 4.5 is connected, without
any universal attribute and vacuum relation. we show that
Q falling into any one case contains hard structure.

Case 1: head join contains at least one vacuum rela-
tion. LetRi ∈ rels(Q) be the relation such that attr(Ri) 6=
∅ and attr(Ri) ⊆ attr(Q) − head(Q). We start from any
non-output attribute B ∈ attr(Ri) and do a binary search

until we find an output attribute A. Let R1, R2 be the con-
secutive pair of relations on this path between A,B, such
that A ∈ attr(R1). Note that attr(R2) ⊆ attr(Q) −
head(Q); otherwise, R2 would be the first relation contain-
ing output attributes in our search. Moreover, R2 is non-
dominated since there is no vacuum relation in Q, and R1 is
also non-dominated since attr(R1)∩attr(R2) ⊆ attr(Q)−
head(Q). In this way, R1, R2 form a stand in Q.

Case 2: head join is disconnected (and no vacuum
relation). As there is no vacuum relation in head join,
head(Q)∩attr(Ri) 6= ∅ holds for each relationRi ∈ rels(Q).
Moreover, we can always identify a pair of attributes X,Z ∈
head(Q) such that there is no path between X,Z in the head
join. As Q is connected, every path between X,Z in Q uses
at least one non-output attribute.

Consider any path between X,Z in Q, in which there is
a pair of consecutive relations R1, R2 such that attr(R1) ∩
attr(R2) ⊆ attr(Q) − head(Q); otherwise, X,Z are con-
nected in the head join. Obviously, attr(R1) ∩ attr(R2) ∩
head(Q) = ∅. We claim that bothR1, R2 are non-dominated.
Suppose not, say R1 is dominated by Ri. By definition,
attr(Ri) ⊆ attr(R1). Observe that attr(Ri)−attr(R2) 6=
∅ since attr(Ri)−attr(R2) ⊇ attr(Ri)∩head(Q)−attr(R2) ⊇
attr(Ri)∩ attr(R1)∩ head(Q)− attr(R2) 6= ∅. Implied by
Definition 5.8, attr(R1) ∩ attr(R2) ⊆ attr(Ri) ∩ head(Q),
coming to a contradiction. Applying a similar argument, we
can show that R2 is non-dominated. Moreover, attr(R1) ∩
head(Q) 6= ∅, attr(R2) ∩ head(Q) 6= ∅, and attr(R1) ∩
attr(R2)∩head(Q) = ∅, thus attr(R1)∩head(Q) 6= attr(R2)∩
head(Q). In this way, R1, R2 form a strand in Q.

Case 3: head join is connected (and no vacuum
relation). As there is no vacuum relation in head join,
head(Q)∩attr(Ri) 6= ∅ holds for each relationRi ∈ rels(Q).
Note that there exists no universal attribute in Q.

We claim that the head join of non-dominated relations
in Q is also connected. Suppose not, there is a pair of at-
tributes A,B ∈ head(Q) which becomes disconnected in the
head join of non-dominated relations. Consider any path
P between A,B in the head join of Q, a sequence of re-
lations where each pair of consecutive relations share at
least one output attribute. We construct another path P ′

as follows. For each relation Rj ∈ P , if it is dominated
by Ri ∈ rels(Q), then we just replace Rj by Ri in P ′.
Let R1 ∈ P,R′1 ∈ P ′ be the first relation in each path re-
spectively. If A /∈ attr(R′1), then add an arbitrary non-
dominated relation R′0 ∈ rels(Q) such that A ∈ attr(R′0)
before R′1. The similar operation is applied for B. We next
argue that P ′ is a valid path between A,B. It suffices to
show that for each pair of consecutive relations in P ′, they
share at least one output attribute.

If R′0 exists, we first show that attr(R′0) ∩ attr(R′1) ∩
head(Q) 6= ∅. In this case, R1 6= R′1; otherwise, A ∈
attr(R1). Observe that attr(R′1)attr(R′0) 6= ∅, then A ∈
attr(R1) ∩ attr(R′0) ⊆ attr(R′1) ∩ head(Q) ⊆ attr(R′1),
coming to a contradiction. Otherwise, attr(R′1) ⊆ attr(R′0),
thus

attr(R′0)∩ attr(R′1)∩ head(Q) = attr(R′1)∩ head(Q) 6= ∅.

The symmetric case when such a relation for B is added can
be argued similarly.

17

Consider any pair of consecutive relations R1, R2 ∈ P . Let
R′1, R

′
2 be the corresponding relations in P ′. By contradic-

tion, assume R′1∩R′2∩head(Q) = ∅. If R1 = R′1, R2 = R′2, it
comes to a contradiction. Otherwise, we further distinguish
two cases. If only one of R1 = R′1 and R2 = R′2 holds, say
R1 6= R1, R2 = R′2. Since attr(R′2) − attr(R′1) 6= ∅, then
attr(R1) ∩ attr(R2) = attr(R1) ∩ attr(R′2) ⊆ attr(R′1) ∩
head(Q), which implies attr(R′1)∩attr(R′2)∩head(Q), com-
ing to a contradiction. Otherwise, R1 6= R1, R2 6= R′2, which
can be argued similarly.

Note that if a full CQ is connected without a universal
attribute, it must be non-hierarchical, implied by the def-
inition of hierarchical join. In this way, the head join of
non-dominated relations in Q is non-hierarchical.

When IsPtime(Q) goes to “others”, some hard structure
has been identified in Q in each case, thus completing the
whole proof.

G. ALGORITHMS IN SECTION 7

G.1 The Boolean Procedure in Algorithm 1
Note that for a boolean CQ without triad structure, a

poly-time algorithm is proposed in [12]. We first mention
several notions. A boolean query is linear if its relations may
be arranged in linear order such that each attribute occurs
in a contiguous sequence of atoms. It is proved that every
boolean query without a triad structure can be transformed
into a query of equivalent complexity that is linear. Thus, we
only provide the algorithm for computing the ADP problem
on an arbitrary linear query.

Boolean(Q,D, k). We first label relations in linear ordering
R1, R2, · · · , Rp and then build a network construct a net-
work G as follows. Note that G is an (p + 1)-partite graph
consists of vertices V = {x}∪V1∪V2∪· · ·∪Vp−1∪{y}, where
Vi = attr(Ri)∩ attr(Ri+1). There is an edge e = (u, v) for
u ∈ Vi, v ∈ Vi+1 if there exists a tuple t ∈ Ri+1 with πVit = u
and πVi+1t = v. Moreover, there is an edge between every
vertex in V1 and x, and every vertex in Vp−1 and y. Each
edge has weight 1.

A minimum cut ofG is exactly the solution for ADP(Q,D, k),
which can be computed using the standard Edmonds–Karp
algorithm with time complexity O(|D|3).

G.2 The Singleton Procedure in Algorithm 1
Singleton(Q,D, k). Let Ri be the relation with the mini-
mum number of attributes. By definition, either head(Q) ⊆
attr(Ri) or attr(Ri) ⊆ head(Q).

Case 1: attr(Ri) ⊆ head(Q). We compute the number
of output tuples that inherent attribute values from a tuple
t ∈ Ri and call it the “profit” of t, denoted as pt. Then,
we sort the tuples by their profits and choose greedily in
decreasing order until their sum exceeds k. These chosen
tuples form an optimal solution.

Case 2: head(Q) ⊆ attr(Ri). We first remove all dangling
tuples2 in Ri, i.e., those don’t participate in the full join
result of the body of Q. Then we count for each output tuple
t ∈ Q(D), the number of tuples in Ri whose projection on

2A tuple is dangling if it doesn’t participate in any full join
result, and non-dangling otherwise. For Rj ∈ rels(Q), its
non-dangling tuples can be obtained by projecting full join
results on attr(Ri). This can be done in poly-time.

attributes head(Q) is equivalent to t, and call it the “cost”
of t, denoted by ct. Finally, we sort the output tuples by
cost and choose in increasing order the first k tuples. The
optimal solution is now obtained as the set of input tuples in
Ri whose removal deletes k output tuples from query result.

The algorithm for singleton query takes O(|D||Q|) time
since computing full join results dominates the complexity.

The pseudocode is given in Algorithm 3.

Algorithm 3: Singleton(Q, k,D)

1 Ri ← arg minRj∈rels(Q) |attr(Rj)|;
2 if attr(Ri) ⊆ head(Q) then
3 foreach tuple t ∈ Ri do
4 pt ← πattr(Ri)=tQ(D);
5 Sort all pt’s in decreasing order as p1, p2, · · · , pm;

6 Find index i such that
∑i−1
j=1 pj < k ≤

∑i
j=1 pj ;

7 return i;

8 else
9 Remove all dangling tuples in Ri;

10 foreach t ∈ Q(D) do
11 ct ← |πhead(Q)=tRi|;
12 Sort all ct’s in increasing order as c1, c2, · · · , cm;

13 return
∑k
j=1 cj ;

G.3 Universe

The pseudocode is given in Algorithm 4.

Algorithm 4: Universe(Q,D, k)

1 A← head(Q) ∩
(⋂

R∈rels(Q) attr(R)
)

;

2 Label all possible combinations over A as
{a1, a2, · · · , ag};

3 foreach i ∈ {1, 2, · · · , g} do
4 Di ← {σπAt=aiRi : ∀Ri ∈ rels(Q)};
5 foreach j ∈ {1, 2, · · · , k} do
6 Opt[1][j]← ComputeADP(Q,D1, j);
7 foreach i ∈ {2, · · · , g} do
8 foreach j ∈ {1, 2, · · · , k} do
9 Opt[i][j]← Opt[i− 1][j];

10 for m = 1 to j − 1 do
11 ci,m ← ComputeADP(Q,Di,m);
12 if Opt[i][j] > Opt[i− 1][j −m] + ci,m

then
13 Opt[i][j]← Opt[i− 1][j −m] + ci,m;

14 return Opt[g][k];

G.4 The Decompose Procedure in Algorithm 1
The pseudocode is given in Algorithm 5.

G.5 The GreedyForCQ Procedure in Algorithm 1
The pseudocode is given in Algorithm 6.

G.6 The DrasticGreedyForFullCQ Procedure
in Algorithm 1

The pseudocode is given in Algorithm 7.

H. DUPLICATED RELATIONS

18

Algorithm 5: Decompose(Q,D, k)

1 Let Q1, Q2, · · · , Qs be the connected subquery of Q;
2 Qα ← Q1;
3 foreach j ∈ {1, 2, · · · , k} do
4 Opt[1][j]← ComputeADP(Q,D1, j);
5 foreach i ∈ {2, 3, · · · , s} do

6 m1 ←
∏i−1
`=1 |Q`(D)|, m2 ← |Qi(D)|;

7 foreach j ∈ {1, 2, · · · , k} do
8 Opt[i][j]← +∞;
9 foreach (k1, k2) ∈ {0, 1, · · · , j} × {0, 1, · · · , j}

do
10 if k1m2 + k2m1 − k1k2 ≥ j then
11 ci,k2 ← ComputeADP(Qi, D, k2);
12 if Opt[i][j] > Opt[i− 1][k1] + ci,k2

then
13 Opt[i][j]← Opt[i− 1][k1] + ci,k2 ;

14 Qα ← Qα ×Qi;
15 return Opt[s][k];

Algorithm 6: GreedyForCQ(Q,D, k)

1 S ← ∅;
2 while k > 0 do
3 t′ ← null, p(t′)← 0;
4 foreach tuple t from an endogenous relation do
5 p(t) = |Q(D − S)| − |Q(D − S − t)|;
6 if p(t) ≥ p(t′) then
7 t′ ← t, p(t′)← p(t);
8 S ← S ∪ {t′}, k ← k − p(t′);
9 return S;

As mentioned, when deciding the poly-time solvability of
the ADP problem on an input CQ Q, we assume that rela-
tions in Q have distinct set of attributes, i.e., there exists
no pair of relations Ri, Rj ∈ rels(Q) such that attr(Ri) =
attr(Rj). The rationale is implied by Lemma H.1, i.e., re-
moving duplicated relations won’t change the difficulty of
the input query. This can also be explained by Lemma B.1,
since all duplicated relations except one are exogenous rela-
tions.

Lemma H.1. For a CQ Q, if there exists a pair of re-
lations R1, R2 such that attr(R1) = attr(R2), then the
ADP(Q,D, k) problem is NP-hard if and only if the ADP(Q′, D, k)
problem is NP-hard, where Q′ is the residual query by remov-
ing relation R1 from Q.

Proof. We prove this result through two steps.
The “If” direction. Assume the ADP(Q′, D, k) problem

is NP-hard. For each instance D′ for Q′, we construct an-

other instance D for Q by combining D′ with RD1 = RD
′

2 .
We now argue that ADP(Q′, D′, k) has a solution of size ≤ c
if and only if ADP(Q,D, k) has a solution of size ≤ c.

Suppose we are given a solution for ADP(Q′, D′, k) as S′

with size ≤ c. Observe that S′ is also a feasible solution for
ADP(Q,D, k). On the other hand, suppose we are given a
solution for ADP(Q,D, k) as S with size ≤ c. We construct
another solution S′ for ADP(Q′, D′, k) as follows. If one tuple
t ∈ Ri for Ri ∈ rels(Q)− {R1} is removed by S, then add
t to S′. If one tuple t ∈ R1 is removed by S, then we just
add the corresponding tuple in R2 to S′. It can be easily
checked that |S′| ≤ |S| ≤ c.

Algorithm 7: DrasticGreedyForFullCQ(Q,D, k)

1 S ← ∅;
2 foreach endogenous relation R(e) do
3 foreach t ∈ R(e) do
4 p(t) = |Q(D)| − |Q(D − t)|;
5 Sort R(e) by p(t) decreasingly, as t1, t2, · · · , t|R(e)|;

6 Find the smallest i such that
∑i
j=1 p(tj) ≥ k;

7 if i ≤ |S| then
8 S ← {tj ∈ R(e) : j ≤ i};
9 return S;

The “Only-If” direction. Assume the ADP(Q,D, k)
problem is NP-hard. For each instance D for Q, we con-
struct another instance D′ for Q′ as follows. Each rela-
tion Ri ∈ rels(Q) − {R1, R2} has the same instance as

that in D, i.e., RD
′

i = RDi , and relation R2 has instance

RD
′

2 = RD1 ∩RD2 . We now argue that ADP(Q,D, k) has a so-
lution of size ≤ c if and only if ADP(Q′, D′, k) has a solution
of size ≤ c.

Suppose we are given a solution for ADP(Q,D, k) as S with
size ≤ c. We first observe that S ∩ (RD1 − RD2) = ∅ and
S∩ (RD2 −RD1) = ∅. Suppose not, say We construct another
solution S′ for ADP(Q′, D‘, k) as follows. If one tuple t ∈ Ri
for Ri ∈ rels(Q) − {R1} is removed by S, then add t to
S′. Moreover, we first observe that no tuple t ∈ RD1 −
RD2 If one tuple t ∈ RD1 ∩ RD2 is removed, we add t to S′;
otherwise, t doesn’t remove any result in Q(D). It can be
easily checked that |S′| ≤ |S| ≤ c and S′ removes exactly the
same number of query result as S does. Thus, S′ is a solution
for ADP(Q′, D′, k) of size ≤ c. On the other hand, suppose we
are given a solution for ADP(Q′, D′, k) as S′ with size ≤ c.
Note that S′ is also a feasible solution for ADP(Q,D, k) of
size ≤ c.

I. PROOF OF LEMMA 7.2
Proof. We will first show that if ADP(Q−Aθ , D, k) is NP-

hard, then ADP(Q,D, k) is also NP-hard. For an arbitrary
instance Dθ for Q−Aθ , we construct another instance D for
Q by setting a single value ∗ in the domain of every at-
tribute A ∈ Aθ and the related predicate as A = ∗. It can
be easily checked that any solution for ADP(Q,D, k) with se-
lections is also a solution for ADP(Q−Aθ , D, k). If there is
an poly-time algorithm for ADP(Q,D, k), ADP(Q−Aθ , D, k) is
also poly-time solvable, coming to a contradiction. Thus,
the problem ADP(Q,D, k) is NP-hard.

Next we show that if there is an poly-time algorithm A
for computing ADP(Q−Aθ , D, k) for all instances D and in-
teger k, then there is also an poly-time algorithm Aθ for
ADP(Q,D, k). Consider an arbitrary instance D for query
Q. Let D′ be the residual instance of applying predicates
to D. Observe that the solution for ADP(Q,D′, k) is exactly
that for ADP(Q,D, k) since tuples in D violating any predi-
cate will not be removed. Moreover, tuples in D′ have the
same value on every attribute A ∈ Aθ. Let D′′ be the in-
stance of removing attributes Aθ from D′. The solution for
ADP(Q−Aθ , D

′′, k) is also the solution for ADP(Q,D′, k), and
can be computed in poly-time. Thus, the ADP(Q,D, k) is also
poly-time solvable for any instance D and integer k.

J. PROOF OF THEOREM 6.2

19

103 104 105 106

Input size

101

102

103

104

105

106

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 24: α = 0.25 (hard)

103 104 105 106

Input size

101

102

103

104

105

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 25: α = 0.25 (hard)

103 104 105 106

Input size

101

102

103

104

105

106

107

Ru
nn

in
g

tim
e

(m
s)

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 26: α = 0.5 (hard)

103 104 105 106

Input size

101

102

103

104

105

Nu
m

be
r o

f t
up

le
s t

o
re

m
ov

e

Remove at least ratio output results
Greedy, =10%
Greedy, =25%
Greedy, =50%
Greedy, =75%

Drastic, =10%
Drastic, =25%
Drastic, =50%
Drastic, =75%

Figure 27: α = 0.5 (hard)

We prove that the reduction preserves the approximation
guarantee in two steps: 1) given an instance of ADP(Q, k,D),
how to construct an instance of k′-PSC, and 2) given a so-
lution to k′-PSC, how to recover a solution to ADP(Q, k,D).

Given the full CQ Q containing p relations in its body,
namely R1, R2, · · · , Rp, we create a set per input tuple in
the p relations, and an element per output tuple in Q(D).
Each set contains elements that correspond to the output
tuples resulting from the join between the associated input
tuple and tuples from other relations in Q. It is well-known
that the natural join on R1, R2, · · · , Rp can be computed
in poly-time. Moreover, exactly one tuple in each of the
p relations participates in the join operation that produces
a particular output tuple. Therefore, each element in the
k′-PSC instance belongs to exactly p sets. As a result, the
size of the k′-PSC instance that we create is polynomial
in the data complexity of ADP(Q, k,D). Moreover, there is
a one-on-one correspondence between instances of the two
problems.

Lastly, given a p-approximate solution to k′-PSC, we re-
cover a solution to ADP(Q,D, k) by picking the tuples asso-
ciated with the sets in the solution, say I. Observe that the
sets in I cover k′ = k elements in U . Thus, removing the
corresponding input tuples from ADP(Q,D, k) will intervene
on at least k output tuples.

K. MISSING EXPERIMENTAL RESULTS FROM
SECTION 8

K.1 Additional Data Distribution Experiments
from Section 8.4

Figures 24, 26, 26, 27 give the running time and quality
results for α = 0.25, 0.5 for the hard query Qpath.

K.2 Effect of Optimizations

=50% =75%

101

102

Ru
nn

in
g

tim
e

(m
s)

Comparison w/o optimization over singleton
Remove one by one
Remove as whole
Improved algorithm

Figure 28: Q7.

=1% =10%
103

104

105

106

107

Ru
nn

in
g

tim
e

(m
s)

Comparison w/o optimization over decomposition
Full partitions
Two partitions
Improved DP

Figure 29: Q8.

Next, we evaluate our optimizations on synthetic datasets.
We use the following two queries: a singleton query Q5 (at-
tributes in R1 are universal) and a disconnected query Q6

(that can be decomposed into three easy queries).

• Q7(A,B,C,D,E, F,G) : −R1(A,B,C), R2(A,B,C,D,
E), R3(A,B,C,D,G), R4(A,B,C, F)

• Q8(A1, · · · , C3) : −R11(A1), R12(A1, B1), R21(A2), R22

(A2, B2), R31(A3), R32(A3, B3)

We generate relatively small synthetic datasets, as the non-
optimized algorithm would take prohibitively long time on
larger ones. For Q7, each relation has 500 input tuples and
each tuple is randomly generated with a combination of in-
tegers between 1 and 100; for Q8, R11, R21, R31 each has
25 input tuples and R12, R22, R32 each has 50. Each input
tuple is randomly generated with a combination of integers
between 1 and 100.

For ADP(Q7, D, k), we compare three different strategies:
(1) removing universal attributes A,B,C one by one, (2)
removing A,B,C together, and (3) invoking procedure Sin-
gleton(Q7, D, k) based on sorting; the results are shown
in Figure 28. For ADP(Q8, D, k), we compare three differ-
ent strategies: (1) decompose into 3 partitions at once, (2)
decompose into 2 partitions each time, and (3) improved
dynamic programming; the results are shown in Figure 29.
Note that all these strategies will compute all subproblems
ADP(Qi, D, k) for each subqueryQi(Ai, Bi, Ci) : −Ri1(Ai, Bi),
Ri2(Ai, Bi), but only differ how the solutions for each sub-
query are used to construct the optimal solution for the
ADP(Q7, D, k) problem. Figures 28 and 29 show that op-
timizations improve the running time significantly.

K.3 Proof of Lemma 6.3

L. MISSING PROOF IN SECTION 4.2.3
Case 1: Head join has at least one vacuum relation.
In this case, observe that there must exist some relation
Ri ∈ rels(Q) such that attr(Ri) ⊆ attr(Q) − head(Q).
Let I = head(Q) and J = attr(Q)−head(Q). We next show
that f is a valid mapping from Q to Qswing if there exists
some relation Rj ∈ rels(Q) such that attr(Rj) ⊆ head(Q),
and to Qseesaw otherwise.

Note that every relation Ri ∈ rels(Q) is mapped to
R1(A), R2(A,B), or R3(B). Crucially, there is at least
one relation that is mapped to R3(B), e.g., Ri. Moreover,
there is at least one relation that is mapped to R2(A,B);
otherwise attributes in I and J are not connected, contra-
dicting the fact that Q is connected. (Note that Q is con-
nected irrespective of whether the head join is connected or
not.) If there exists some relation Rj ∈ rels(Q) such that

20

attr(Rj) ⊆ head(Q), then Rj will be mapped to R1(A);
and f is a valid mapping from Q to Qseesaw. Otherwise, f
is a valid mapping from Q to Qswing.

Case 2: Head join is disconnected (and no vacuum
relation). In this case, we can always identify a pair of at-
tributes X,Z ∈ head(Q) such that there is no path between
X,Z in Qhead. As Q is connected, every path between X,Z
in Q uses at least one attribute in attr(Q) − head(Q). In
other words, removing attr(Q) − head(Q) decomposes Q
into multiple connected subqueries, where X,Z are in differ-
ent ones. Let I be the set of attributes appearing in the con-
nected subquery containing X. Note that head(Q) − I 6= ∅
since X,Z are in different connected subqueries.

Observe that there must exist a relation R` ∈ rels(Q)
such that attr(R`) ∩ I 6= ∅ and attr(R`) ∩ (attr(Q) −
head(Q)) 6= ∅; otherwise, there is no path between X and
any non-output attribute, contradicting the fact that Q is
connected. Applying a similar argument to the connected
subquery that doesn’t contain X, there must exist a rela-
tion Rh ∈ rels(Q) such that attr(Rh) ∩ (head(Q)− I) 6= ∅
and attr(Rh) ∩ (attr(Q) − head(Q)) 6= ∅. Depending on
whether there exists some relation Ri ∈ rels(Q) such that
attr(Ri) ⊆ I and some relation Rj ∈ rels(Q) such that
attr(Rj) ⊆ head(Q)− I, we have two different cases.

Case 2.1: Both relations Ri and Rj as described above
exist. Set J = attr(Q)− I. On one hand, each relation in Q
is mapped to any one of R1(A), R2(A,B) or R3(B). On the
other hand, relations Ri, R`, Rj are mapped to R1, R2, R3

respectively. Thus, f is a valid mapping from Q to Qpath.
Case 2.2: At least one of Ri, Rj doesn’t exist, say Rj .

Set J = attr(Q) − head(Q). In this mapping, no relation
has all of its attributes mapped to ∗; otherwise, Rj exists,
which is a contradiction. So, each relation in Q is mapped to
any one of R1(A), R2(A,B) or R3(B). On the other hand,
relations R`, Rh are mapped to R2, R3 respectively. If Ri
exists, it will be mapped to R1(A) and f is a valid mapping
from Q to Qseesaw. Otherwise, f is a valid mapping from Q
to Qswing.

Case 3: Head join is connected (and no vacuum
relation). In this case, the head join is connected but
has no vacuum relation. We further distinguish Q into
two cases: (3.1) there exists a pair of relations Ri, Rj ∈
rels(Q) such that attr(Ri) ∩ attr(Rj) ∩ head(Q) = ∅;
(3.2) for each pair of relations Ri, Rj ∈ rels(Q), we have
attr(Ri) ∩ attr(Rj) ∩ head(Q) 6= ∅.

Case 3.1. Set I = attr(Ri)∩head(Q) and J = head(Q)−
attr(Ri). In this mapping, no relation has its all attributes
mapped to ∗; otherwise, there is a vacuum relation in the
head join, which is a contradiction. So, each relation in Q is
mapped to any one of R1(A), R2(A,B) or R3(B). Moreover,
Ri, Rj are mapped to R1(A), R3(B) respectively. Note that
there must also exist some relation mapped to R2(A,B);
otherwise, Ri is a single connected subquery of the head
join, contradicting the fact that the head join is connected.
Thus, f is a valid mapping from Q to Qpath.

Case 3.2. In this case, we first observe that |attr(Ri) ∩
head(Q)| ≥ 2 for any relation Ri ∈ rels(Q). Suppose not,
say attr(Ri)∩head(Q) = {C}. Since attr(Ri)∩attr(Rj)∩
head(Q) 6= ∅ for any Rj ∈ rels(Q), then C is a universal
attribute of Q, which is a contradiction. For simplicity, as-
sume no pair of relations in the head join have exactly the

same attributes; otherwise, we just keep one of them in the
mapping construction.

We label all relations in an increasing order of the number
of output attributes, as R1, R2, · · · , Rp, breaking ties arbi-
trarily. For simplicity, denote attr(Ri)∩attr(Rj)∩head(Q)
as Aij with ordering (i, j) if i < j, and Aji with ordering
(j, i) otherwise. Let Ri, Rj be the pair of relations whose
intersection contains smallest number of output attributes.
Without loss of generality, assume i < j. If there are multi-
ple pairs with the same number of attributes in their inter-
section, we just break ties by their lexicographical order. We
further distinguish the mappings into two cases as follows.

Case 3.2.1: i > 1. We observe that A1i − A1j 6= ∅
and A1j − A1i 6= ∅. Suppose not, say A1i − A1j = ∅.
This implies A1i ⊆ A1j ⊆ Aij , contradicting the fact that
Aij has smaller number of attributes than A1i. (Note that
(1, i) is lexicographically earlier than (i, j) in the case of
a tie.) Similarly, we can also show that A1j − A1i 6= ∅.
Moreover, there exists no relation R` ∈ rels(Q) such that
attr(R`) ∩ head(Q) ⊆ Aij . This is because of the fact that
no pair of relations have exactly the same attributes, which
in combination with attr(R`)∩head(Q) ⊆ Aij would imply
that attr(R`)∩head(Q) (Ri∩head(Q). This would in turn
imply ` < i, and consequently, that A`i has smaller number
of attributes than Aij (or is lexicographically earlier in the
case of a tie), which is a contradiction.

Set I = (attr(Ri)∩head(Q))−attr(Rj) and J = head(Q)−
attr(Ri). In this mapping, no relation gets all attributes
mapped to ∗, since there is no relationR` such that attr(R`)∩
head(Q) ⊆ Aij as discussed above. So, each relation in Q is
mapped to any one of R1(A), R2(A,B) or R3(B). Moreover,
relations Ri, R1, Rj are mapped to R1, R2, R3 respectively.
Thus, f is a valid mapping from Q to Qpath.

Case 3.2.2: i = 1. For any attribute C ∈ A1j , there
must exist a relation R` such that C /∈ attr(R`); other-
wise, C is an universal attribute, which is a contradiction.
W.l.o.g., assume ` < j. We claim that A`j − attr(R1) 6= ∅;
otherwise, A`j ⊆ A1j . Since C ∈ A1j − A`j , |A`j | < |A1j |,
contradicting the fact that R1, Rj share the smallest number
of output attributes among all pair of relations. Moreover,
there exists no relation Rh ∈ rels(Q) such that attr(Rh)∩
head(Q) ⊆ A1`. Otherwise, either attr(Rh) ∩ head(Q) (
attr(R1) ∩ head(Q) which contradicts the fact that h > 1,
or attr(Rh)∩head(Q) = attr(R1)∩head(Q) which contra-
dicts the fact that no pair of relations have exactly the same
output attributes.

Set I = (attr(R1)∩head(Q))−attr(R`) and J = head(Q)−
attr(R1). In this mapping, no relation gets all attributes
mapped to ∗, since there exists no relation Rh such that
attr(Rh) ∩ head(Q) ⊆ A1` as discussed above. So, each
relation in Q is mapped to any one of R1(A), R2(A,B) or
R3(B). Moreover, R1, Rj , R` are mapped to R1, R2, R3 re-
spectively. Thus, f is a valid mapping from Q to Qpath.

M. PROOF OF LEMMA 4.3
Proof. We divide the proof of Lemma 4.3 into two parts.

To prove the “if” direction, we show that if the ADP problem
on Q−A is NP-hard, then the ADP problem on Q is also NP-
hard. To prove the “only-if” direction, it is equivalent to
prove that if the ADP problem on Q−A is poly-time solvable,
then the ADP problem on Q is also poly-time solvable. More
specifically, given a poly-time algorithm A for solving ADP

21

problem on Q−A, we build another poly-time algorithm A′
for solving ADP problem on Q.

The “if” direction. Given any instance D′ for Q−A, we
construct another instance D for Q as follows. Consider any
relation R′i ∈ rels(Q−A). For each tuple t′ ∈ R′i, we create
a new tuple t ∈ Ri such that πAt = ∗ (a fixed value for all
tuples and all relations in attribute A), and πBt = πBt

′ for
every other attribute B ∈ attr(Ri)−A.

Hence there is a one-to-one correspondence between the
output tuples in Q(D) and Q−A(D′), and also in the input
D and D′. Therefore, a solution to ADP(Q,D, k) of size c
corresponds to a solution to ADP(Q−A, k,D

′) of size c, and
vice versa. The proof follows.

The “only-if” direction. Assume there is a poly-time
algorithm A for computing ADP(Q−A, D, k) for any instance
D and integer k. We design a poly-time algorithm A′ for
ADP(Q,D, k) as follows:

Consider any input instance D for Q and integer k. We
first partitionD intoD1, D2, · · · , Dg corresponding to a1, a2,
· · · , ag, which are all the possible values in the domain of
attribute A. In Di, each tuple t has πAt = ai. Note that
the query result Q(D) is a disjoint union of the subquery
results Q(D1), Q(D2), · · · , Q(Di).

Now, we run a dynamic program to compute the optimal
solution with cost Opt. Let Opt[i][s] denote the minimum
number of input tuples that have to be removed in order
to remove at least s output tuples from Q(D), under the
constraint that the input tuples can only be chosen from D1

to Di. Using this notation, we can now write the following
dynamic program:

Opt[i][s] =
s

min
m=0

{
Opt[i− 1][s−m] + ci,m

}
. (1)

Here, m denotes the number of output tuples being removed
from the subproblem on Di. And, ci,m is the cost of the
solution for subproblem ADP(Q,Di,m), i.e., the minimum
number of input tuples in Di whose removal would remove
at least m output tuples from Q(Di). Note that ci,0 = 0 for
every i.

Note that each tuple in Di has the same value ai in at-
tribute A. Hence, computing ADP(Q,Di,m) is equivalent to
computing ADP(Q−A, Di,m), which can be solved in poly-
time by algorithm A. Recall that there are g distinct values
in attribute A, thus g ≤ |D|. Moreover, k is bounded by the
size of query results, i.e. k ≤ |Q(D)|. The number of cells in
Opt is g · k = O(|D| · |Q(D)|), which is polynomial in terms
of |D|. Thus, algorithm A runs in polynomial time in data
complexity.

N. PROOF OF LEMMA 4.4
Proof. As in the previous lemma, we have two parts

corresponding to the “if” and “only if” directions.
The “if” direction. W.l.o.g., assume the ADP problem

onQ1 is NP-hard. Given an instanceD′ forQ1, we construct
another instance D for Q as follows. All relations in Q1 have
the same tuples as in D′. Set L = |Q1(D′)| · |D′|. Recall
that |Q1(D′)| denotes the number of results in query Q1

over instance D′. Each relation Rj ∈ rels(Q`) for ` ≥ 2
contains L tuples, where each tuple is given a unique label
that appears as the value of every attribute in that tuple.
(Note that the size of D is polynomial in the size of D′.)
This ensures that for any connected subquery Q`, there are
exactly L output tuples in Q`(D) corresponding to the L

unique labels given to the tuples in every relation. Then,
the number of output tuples in Q(D) is |Q1(D′)| · Ls−1,
since the join across the disconnected components results in
a cross product.

We argue that ADP(Q1, D
′, k′) has a solution of size ≤ c if

and only if ADP(Q,D, k′ · Ls−1) has a solution of size ≤ c.
In one direction, if we can remove k′ results from Q1(D′)

by removing at most c tuples from D′, then removing these
tuples from D removes k′ ·Ls−1 results from Q(D), which a
feasible solution for ADP(Q,D, k′ · Ls−1).

In the other direction, suppose we are given a solution for
ADP(Q,D, k′ ·Ls−1) of size at most c. Observe that c ≤ |D′|;
otherwise, there is always a better solution for ADP(Q,D, k)
by removing all input tuples from relations in Q1. Let xi
be the number of input tuples removed from relations in
Qi, and yi be the number of output tuples removed from
Qi(D). A key observation is that there exists a solution for
ADP(Q,D, k′ · Ls−1) of size ≤ c such that (i) yi = xi for any
i ≥ 2; (ii) xi 6= 0 for at most one i ≥ 2; and (iii) y1 ≥ k′.
We will prove these one by one.

For (i), we can always remove xi output tuples fromQi(D)
by removing xi tuples from one specific relation in Qi. Thus,
the total number of results removed can be written as:

f(x1, x2, · · · , xs) = |Q1(D
′)|·Ls−1−(|Q1(D

′)|−y1)·
s∏
i≥2

(L−xi) ≥ k.

For (ii), suppose s ≥ 3 and x2, x3 6= 0 without loss of gen-
erality. We can construct another solution for ADP(Q,D, k′ ·
Ls−1) with x′i = xi for i /∈ {2, 3}, x′2 = x2 + x3, and x′3 = 0,
which is no worse. This is because:

f(x1, x2 + x3, 0, x4, · · · , xs) ≥ f(x1, x2, · · · , xs).

After applying this argument repeatedly, we can obtain a
solution for ADP(Q,D, k′ ·Ls−1) that removes x1 tuples from
relations in Q1 and x2 tuples from relations in Q2, where
x1 + x2 ≤ c, with ≥ k results removed from Q(D).

For (iii), suppose y1 < k′. As x1 + x2 ≤ c, there comes

f(x1, c− x1, 0, · · · , 0) ≥ f(x1, x2, 0, · · · , 0) ≥ k

Expanding f(x1, c− x1, 0, · · · , 0) and k, we get:

|Q1(D′)| ·Ls−1−(|Q1(D′)|−y1)(L−c+x1) ·Ls−2 ≥ k′ ·Ls−1

Rearranging this inequality, we will get

(|Q1(D′)| − k′) · L ≥(|Q1(D′)| − y1)(L− c+ x1)

≥(|Q1(D′)| − y1)(L− |D′|)

where the last inequality is implied by the fact that c ≤ |D′|.
We can further rewrite the inequality above as

(|Q1(D′)| − y1) · |D′| ≥ (k′ − y1) · L > L (since y1 < k′).

This contradicts: (|Q1(D′)|−y1) · |D′| ≤ |Q1(D′)| · |D′| = L.
Thus, there exists a solution for ADP(Q,D, k′ · Ls−1) of

size ≤ c such that y1 ≥ k′. Removing those x1 tuples from
relations in Q1 is a solution for ADP(Q1, D

′, k′) of size ≤ c.
The “only-if” direction. Assume that for each Qi,

there is a poly-time algorithmAi for computing ADP(Qi, D, k)
for any instance D and integer k. We next present another
poly-time algorithm A for ADP(Q,D, k).

Consider an arbitrary input instance D and integer k. Let
|Qi(D)| = mi. Note that if removing ki output tuples from
Qi(D), there are mi−ki remaining output tuples in Qi(D),
which together form

∏s
i=1(mi − ki) output results overall.

22

In other words,
∏s
i=1mi −

∏s
i=1(mi − ki) output tuples are

removed from Q(D) in total. Therefore, the overall optimal
solution is given by:

ADP(Q,D, k) = min
(k1,k2,··· ,ks)∈K

s∑
i=1

ADP(Qi, D, ki) (2)

where K = {(k1, k2, · · · , ks) :
∏s
i=1mi −

∏s
i=1(mi − ki) ≥

k, ki ∈ Z+,∀i ∈ {1, 2, · · · , s}}. Note that the subproblem
ADP(Qi, D, ki) is solved in polynomial time by algorithm Ai.
Note that there are at most ks = O(|Q(D)|s) different com-
binations of k1, k2, · · · , ks, which is still polynomial in terms
of data complexity. Overall, the running time of A, which
simply enumerates all these options and chooses the best
one, is polynomial.

23

	Introduction
	Related Work
	Preliminaries
	Background
	Problem Definition
	Special Cases

	Poly-time Decidability
	Hardness Preservation in Simplifications
	NP-Hardness for ``Others''
	Core Queries
	Hardness Preserving Mapping
	Mapping to the core

	Structural Characterization
	Boolean CQ Revisited
	Hard Structures for General CQs
	Triad-like
	Non-hierarchical Join
	Strand

	Sketch of Proof of Theorem 5.1

	Approximations
	Full CQs
	Inapproximability of General CQs

	Algorithms and Optimizations
	Singleton
	Universe and Decompose
	Greedy Heuristics
	Supporting Selection Operator

	Experiments
	Datasets and Queries
	Scalability
	Complexity of Queries
	Data Distribution

	Future Work
	References
	IsPtime in Section 4
	Endogenous relations
	Proof of Lemma ??
	Proof of Lemma C.4
	Examples for Section 4.2.3
	Proof of Theorem ??
	Algorithms in Section ??
	The Boolean Procedure in Algorithm 1
	The Singleton Procedure in Algorithm 1
	Universe
	The Decompose Procedure in Algorithm 1
	The GreedyForCQ Procedure in Algorithm 1
	The DrasticGreedyForFullCQ Procedure in Algorithm 1

	Duplicated Relations
	Proof of Lemma ??
	Proof of Theorem 6.2
	Missing Experimental Results from Section 8
	Additional Data Distribution Experiments from Section 8.4
	Effect of Optimizations
	Proof of Lemma 6.3

	Missing proof in Section 4.2.3
	Proof of Lemma 4.3
	Proof of Lemma 4.4

