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Synonyms

Provenance in probabilistic databases

Definition

Lineage, also called Boolean provenance, event
expression, or why-provenance, is a form of
provenance or origin of the answer(s) to a query
executed on a database. Lineage is expressed
as a Boolean formula with variables assigned
to the tuples in the database, where joint usage
of the tuples (by the database join operation)
is captured by Boolean conjunction (AND, ^)
and alternative usage (projection or union) by
Boolean disjunction (OR, _). Uncertain data is
typically expressed in the form of a probabilistic
database, which is a compact representation
of a probability distribution over a set of
deterministic database instances (called possible
worlds). When an input query is evaluated
on such a probabilistic database, instead of
a deterministic set of tuples representing the
answer, the output is a distribution on possible
answers for the possible worlds. The query

evaluation problem on uncertain data aims to
compute this output probability distribution
efficiently. Lineages of the answers play a key
role in understanding, expressing, and efficiently
evaluating the probability distribution of query
answers for uncertain data.

Historical Background

Several forms of uncertain data, either proba-
bilistic or not, have been studied in the database
literature starting in early 1980s, e.g., attribute-
level uncertainty, world-set decomposition
incomplete databases, probabilistic graphical
model, possible world model, tree-based models
(And/Xor Tree, WS-trees, decomposition trees),
and tuple-independent and block-independent-
disjoint probabilistic database models (see the
books [2, 36] and the references therein). Pearl
[33] introduced the taxonomy of intensional and
extensional approaches as follows: the exten-
sional (rule-based) approach treats uncertainty
as a generalized truth value assigned to formulas
and computes the uncertainty as a function of the
uncertainties of its sub-formulas; the intensional
(model-based) approach attaches uncertainty
to subsets of possible worlds. According to
this definition, the intensional approach is
semantically clearer than extensional approach
(due to potential improper treatment of correlated
sources of evidence in the extensional approach)
but computationally less efficient (due to the
existence of many possible worlds). Later,
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Fuhr and Rölleke [18] (also [39]) defined an
elaborate probabilistic data model, where each
tuple of each relation (base, intermediate, or
output) is accompanied by an event expression.
Event expressions are manipulated by relational
algebra (RA) operators, and the event expressions
occurring in the base relations are associated
with probabilistic weights. In this model,
the tuple weights of the result of an event
expression always conform to the underlying
probabilistic model given by the intensional
semantics, whereas for certain event expressions,
the same result can be obtained by extensional
semantics, assuming that the tuples in the base
relations are independent. This tuple-independent
probabilistic database model has been the most
popular model in the study of the probabilistic
databases so far, along with the concept of event
expressions that are the most common notion of
lineages used for probabilistic databases.

Lineage of an answer tuple output by a
database query, in general, identifies the set of
source tuples that contributed to the answer.
Lineage was studied as a method to trace
the sources of errors and debug anomalies
in processed data (e.g., [10, 11]). However,
one of the key usages of lineage has been in
representing and evaluating uncertainty in the
processed data. In fact, lineage was formally
introduced in early 1980s in a seminal paper
by Imielinski and Lipski [24] for representing
query answers on incomplete data represented
as v-tables (that may contain variables or
marked nulls) and c-tables (v-tables where
each tuple is annotated with a propositional
formula and optional global conditions further
restricting the possible worlds). Green and
Tannen [20] discussed various relationships
between incomplete databases and probabilistic
databases and introduced the term probabilistic
c-table or pc-table (for a c-table together with
a finite probability space for each variable x
that occurs in the c-table). Later, Green et al.
[21] introduced the generic notion of provenance
semirings and argued that both (i) conditions
as propositional formulas restricting possible
worlds on c-tables proposed by Imielinski and
Lipski [24] and (ii) event expressions on event

tables proposed by Fuhr and Rölleke [18] are
special forms of provenance semirings. Lineage
[5, 13] has been called by several names in
the literature, e.g., event expressions [18],
PosBoolŒX� [21], annotations [16], or Boolean
provenance polynomials BŒX� (Green [19]); a
concrete example of lineage in a probabilistic
database is given in the next section.

Scientific Fundamentals

Lineage for query evaluation in tuple-
independent probabilistic databases. In a
tuple-independent probabilistic database, each
input tuple has a certain probability belonging
to a random instance of the database (called a
possible world) independent of the other tuples.
Figure 1a shows such an example database
D (example from [34]) where each tuple t is
annotated with a unique random tuple variable
Xt and a probability value pt > 0. For instance,
for the tuple t D R.a1/, Xt D w1, and pt D 0:3.
The tuple t is present in an instance if and only
if Xt is true (=1), PrŒXt D 1� D pt , and Xt -s
are independent random events. The probability
of a possible world W can be computed by
computing the probability that exactly the tuples
in W are present and the other tuples are absent.
Given a query Q, the probability of an answer
tuple s belonging to Q.D/ is the sum of the
probabilities of the possible worlds W of D such
thatQ.W / contains s. Without loss of generality,
it can be assumed that Q is a Boolean query, and
therefore, the goal is to compute the probability
that Q.D/ evaluates to true.

The number of possible worlds is exponential
in the number of tuples in the input probabilistic
database, so techniques have been developed to
compute the distributions of the answers directly
from the input representation of the probabilistic
database D using event expressions [18] or lin-
eages. The idea is to use conjunction (^) for joint
usage (joins) and disjunction (_) for alternative
usage (unions or projections) on lineages of inter-
mediate relations, starting with the tuple variables
of the base relations. The resulting lineage is
independent of the query plan used to evaluate
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Uncertain Data Lineage, Fig. 1 A probabilistic databaseD, a Boolean queryQ, and the lineage ˚Q;D

the answers [21] (i.e., different query plans will
result in equivalent lineages) and is polynomial
in size in data complexity (i.e., when Q is fixed
and D variable). An example Boolean query Q
and the corresponding lineage ΦQ;D on the given
database D is given in Fig. 1 (for the sake of
simplicity, C is used for OR (_), and AND (^)
is omitted in the Boolean formulas). It can be
verified that the query Q will evaluate to true on
the input database D if and only if ΦQ;D is true,
i.e., PrŒQ.D/ D 1� = PrŒΦQ;D D 1�, given the
distributions of the independent random variables
Xt -s.
Intensional and extensional methods. The
event expression method, which has the same
semantic as computation using explicit possible
worlds, was called intensional semantic by Fuhr
and Rölleke [18]. They also observed that the
computation of answer probabilities may take
exponentially many steps in general using the
inclusion-exclusion principle. This is not surpris-
ing as the problem of query evaluation on proba-
bilistic databases is #P-hard, even for very simple
conjunctive queries (CQs) on tuple-independent
probabilistic databases such as the one in Fig. 1b
[14]. Fuhr and Rölleke, however, also observed
that certain lineage expressions are amenable to
probability computation in polynomial time by
extensional semantic or simple evaluation, yield-
ing the same result as in the intensional seman-
tic. Extensional semantic has been studied thor-
oughly by a series of seminal papers by Dalvi and
Suciu that eventually led to a dichotomy result
[13] for union of conjunctive queries (UCQs): for
any UCQ q, either a safe query plan exists that
can compute the output probability in polynomial
time for any input database (then q is a safe

query) or computation of the probability for q is
#P-hard (then q is an unsafe query). This article
focuses on lineages for uncertain data and does
not discuss the dichotomy result further.
Model counting on lineages for query evalua-
tion. Intensional query evaluation on probabilis-
tic databases reduces to weighted-model counting
on the lineage expressed as a Boolean (proposi-
tional) formula. Model counting is the problem of
computing the number, #Φ, of satisfying assign-
ments of a Boolean formula Φ. Weighted model
counting is the same as the probability computa-
tion problem on independent random variables,
i.e., computing the probability of Φ being true
given probabilities of the independent random
variables in Φ. Model counting is #P-hard in
general (even for formulas where satisfiability is
easy to check (Valiant [37])). However, there
are classes of propositional formulas that allow
(weighted) model counting in polynomial time,
for instance, those that can be efficiently com-
piled into certain knowledge compilation forms
that are discussed later.
Lifted and grounded inference for model
counting on lineages. The intensional approach
of first computing the lineage and then evaluating
the probability of the answers by weighted model
counting is also called grounded inference. For
example, given the Boolean query Q in Fig. 1b
represented as a first-order formula: 9x; y R.x/^
S.x; y/ ^ T .y/, and the domain of variables
x; y as f1; 2; � � � ; ng in a probabilistic database
D, the lineage will be the propositional formula
ΦQ;D D

W
i;j2Œ1;n�R.i/ ^ S.i; j / ^ T .j /. The

alternative to the grounded inference approach is
the extensional query evaluation discussed ear-
lier, also called lifted inference in the statistical
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relational model literature. There is no consensus
on the definition of the lifted inference approach,
except the intuitive idea that it should exploit
the fixed query structure that is often lost in
the grounded methods and should not require
explicit construction of the lineage expression.
Early definitions of lifted inference even required
that the entire inference should be done using the
first-order formula (query), without any ground-
ing at all, in constant time in the size of the
domain of the database. Such a restricted model
called symmetric probabilistic databases, where
probabilistic weights are attached to relations, has
been studied by Beame et al. [6].
Knowledge compilation forms and their appli-
cations in weighted model counting. One ap-
proach to probability computation on a Boolean
formula Φ is by compiling Φ into a knowledge
compilation form KΦ that allows efficient model
counting. This approach requires that: (1) there
exists a KΦ of size polynomial in the size of
Φ, and the conversion from Φ to KΦ can be
done in polynomial time, and (2) given KΦ, the
probability computation of Φ can be done in
polynomial time in the size of KΦ.

Compilation of Boolean formulas (in general,
and for lineages in probabilistic databases) into
the following knowledge compilation forms has
been extensively studied in the literature. All
of these forms allow computation of probability
of the underlying propositional formula in time
linear in the size of KΦ, thus satisfying the
second requirement above.

(a) Read-once formulas: A Boolean formula in
which each variable occurs exactly once is
in read-once form (Newman [31]) and the
formulas that have an equivalent read-once
form are called read-once [25, 34, 35]. For
instance, xy C y´ C uw is not in read-once
form (two occurrences of y), but it is read-
once, since it is equivalent to y.x C ´/C uw.
If the participating variables in a formula in
read-once form are mutually independent, the
probability of the formula can be computed by
a bottom-up pass on the corresponding read-
once tree (see Fig. 2a) by repeatedly using
PrŒX ^ Y � D PrŒX�� PrŒY � and PrŒX _ Y � D

1 � .1 � PrŒX�/ � .1 � PrŒY �/. Of course,
not all Boolean formulas are read-once (e.g.,
xy C y´ C ´x or xy C y´ C ´u); a charac-
terization is given by Gurvich [22] using the
co-occurrence graphs of the formulas [35].

(b) OBDDs and FBDDs. Ordered binary decision
diagrams (OBDDs) (Bryant [9]) are special
kinds of binary decision diagrams (BDDs)
(Akers [3]) or branching programs (Masek
[29]) and represent a Boolean function using
a directed acyclic graph (see Fig. 2b). Each
internal node in this graph is a decision node,
and there are two sink nodes labeled 0 and 1
(for false and true output values). A decision
node queries a Boolean variable x in the
formula and has 2 out edges labeled 0 and 1
denoting the value of the variable. Given an
assignment of the Boolean variables, the value
of the function is the label of the unique sink
node reached from the root by following that
assignment. Further, OBDDs require that each
input variable is queried at most once on each
source-sink path and the order of the variables
in the decision nodes is the same along any
path from the root to a sink. Free binary
decision diagrams (FBDDs) (Wegener [38]),
also known as read-once branching programs
(ROBPs), is a generalization of OBDDs where
each variable is queried once but does not have
to be queried in the same order along different
paths.

(c) Decision-DNNFs and d-DNNFs. Determin-
istic decomposable NNFs (d-DNNFs) are re-
stricted Boolean circuits in negation normal
form (NNF) (circuits with AND (^) and OR
(_) gates with negations pushed to the in-
put variables using De Morgan’s laws). In a
d-DNNF, the AND-nodes are decomposable
(the sub-circuits are defined on disjoint set of
variables), and the OR-nodes are deterministic
(the sub-circuits never simultaneously eval-
uate to true); therefore, the probabilities of
the sub-formulas at AND and OR nodes are,
respectively, product and sum of the prob-
abilities of their children. Decision-DNNFs
(Huang and Darwiche [23]) are restricted d-
DNNFs that ensure determinism by having a
single variable x that evaluates to 1 on one
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branch of an OR-node and 0 on the other,
.x ^ A/ _ .:x ^ B/, which is equivalent to
having decision nodes as in FBDDs.

Lineages and knowledge compilation forms
in probabilistic databases. Fuhr and Rölleke
( [18], Thm. 4.5) stated that probabilities can be
computed by “simple evaluation” (i.e., by the
extensional method) if and only if the lineages
computed intensionally are in read-once form.
Moreover, the safe plans of [14] are such that
if the lineages are computed with the plan, they
will be in read-once form. Olteanu and Huang
showed that if a conjunctive query without self-
joinQ is safe, then for any probabilistic database
D, the lineage of any tuple in Q.D/ is read-
once. Jha and Suciu [25] showed that (i) for
CQs without self-joins, four classes of knowledge
compilation forms (read-once, OBDDs, FBDDs,
and d-DNNFs) collapse to the class of hierarchi-
cal queries [14] (the subsets of relational atoms
for any pair of variables are either disjoint or
one is contained in the other); (ii) however, for
UCQs, these four classes form a strict hierarchy.
Sen et al. [35] and Roy et al. [34] took an alter-
native approach and studied algorithms to decide
the read-once property of lineages given both
the query and an input probabilistic database.
This approach allows efficient probability com-
putation on read-once lineages of unsafe queries
that are #P-hard in general (e.g., the query in
Fig. 1b is unsafe, but its lineage ΦQ;D in Fig. 1c
on the input database D is read-once, with the
equivalent read-once form: .w1v1 C w2v2/u1 C
w3.v3u2Cv4u3/). Using the same instance-based
approach, Amarilli et al. [4] studied algorithms
and lower bounds for database instances with
bounded treewidths (e.g., the lineage of monadic
second-order queries on bounded-treewidth in-
stances can be represented as bounded-treewidth
circuits, polynomial-size OBDDs, and linear size
d-DNNFs). Proving exponential lower bounds on
the sizes of FBDDs and decision-DNNFs for a
class of safe queries (with a polynomial time
extensional evaluation technique), Beame et al.
[5] argued that lifted inference or extensional
evaluation is strictly more powerful than the
grounded inference approach used in the state-

of-the-art model counters that have to construct
decision-DNNFs implicitly or explicitly.
Approximation. Lineages in probabilistic
databases are also useful for approximate
query evaluation. For very simple unsafe
queries like the one in Fig. 1b, the query
evaluation on probabilistic databases is #P-
hard. However, for any positive query (UCQ),
an approximation count with arbitrarily low
error can be obtained (called fully polynomial
randomized approximation scheme or FPRAS).
The idea is to expand the propositional formula
expressing the lineage into disjunctive normal
form (DNF), which is polynomial in size for
UCQs (data complexity), and then apply the
Monte Carlo algorithm by Karp and Luby
[27] for approximate DNF counting. Although
the notion of lineages naturally extends to
queries with the negation operator [18], the
DNF-counting method does not apply to non-
monotone queries since the DNF may be
exponential in the size of the database. The
complexity of query evaluation using lineages
for queries with negation was studied by Khanna
et al. [28], who showed that even the difference
of two safe conjunctive queries can be #P-hard
and, unlike positive queries without negation,
inapproximable in general. Fink and Olteanu [15]
investigated another concept of approximating
query answers by obtaining Boolean formulas in
read-once forms, that can provide upper or lower
bounds of probabilities for the actual lineages of
a given CQ without self-joins.
Lineages for other classes of queries. Fink
and Olteanu [16] studied dichotomy for CQs
with negation but no self-joins and for quantified
queries expressing set division/inclusion/equiva-
lence/incomparability, using compilation of the
lineages into OBDDs. Fink et al. [17] studied
positive RA queries with aggregates and pro-
posed a representation system for probabilistic
data called pvc-tables that can support aggregates
as tuple annotations or lineage. Kanagal and
Deshpande [26] studied probability computation
using lineages when the tuples in the input prob-
abilistic database are allowed to have arbitrary
correlations. On such databases, even evaluation
of read-once formulas was shown to be #P-hard,
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Uncertain Data Lineage, Fig. 2 Various knowledge compilation forms for a simple read-once formula .xy C ´/w.
(a) Read-once tree. (b) OBDD. (c) decision-DNNF

and a characterization of the complexity was
provided using a parameter called lwidth (similar
to treewidth).

Key Applications

Lineages for uncertain data have been thoroughly
studied for understanding query answering in
probabilistic databases and have been applied in
several systems for uncertain data. Benjelloun
et al. [7] introduced the notion of ULDBs
(uncertain-lineage databases) as a model of
database systems that can support data in
an extended relational model, an SQL-based
query language, uncertainty of the data, and
data lineage, all at the same time. The ULDB
model was implemented in the Trio system
[7] developed at Stanford, where each tuple
has a bag of alternatives, and at most one of
these alternatives can exist in a possible world
(these are called disjoint-independent or block-
independent-disjoint probabilistic databases
[12]). Olteanu and Van Schaik proposed
ENTFrame [32], a framework for processing
probabilistic data using event expressions (a form
of lineage) that can encode correlations, trace the
computation of user programs (in a fragment of
Python), and handle uncertainty in the program
variables. Lineages have also been used for other
applications on uncertain data, e.g., for query
containment (Afrati and Vasilakopoulos [1]),
reasoning in uncertain RDF knowledge bases
(Meiser et al. [30]), and privacy and security
in information integration activities (Blaustein
et al. [8]).
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