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ABSTRACT

Local sensitivity of a query Q given a database instance D, i.e.
how much the output Q(D) changes when a tuple is added to
D or deleted from D, has many applications including query
analysis, outlier detection, and differential privacy. However,
it is NP-hard to find local sensitivity of a conjunctive query
in terms of the size of the query, even for the class of acyclic
queries. Although the complexity is polynomial when the
query size is fixed, the naive algorithms are not efficient for
large databases and queries involving multiple joins. In this
paper, we present a novel approach to compute local sensitiv-
ity of counting queries involving join operations by tracking
and summarizing tuple sensitivities. We give algorithms for
the sensitivity problem for full acyclic join queries using join
trees, that run in polynomial time in both the size of the data-
base and query for an interesting sub-class of queries, which
we call ‘doubly acyclic queries’ that include path queries, and
in polynomial time in combined complexity when the maxi-
mum degree in the join tree is bounded. Our algorithms can
be extended to certain non-acyclic queries using generalized
hypertree decompositions. We evaluate our approach and
show applications of our algorithms to obtain better results
for differential privacy by orders of magnitude.
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1 INTRODUCTION

Understanding how adding or removing a tuple to the rela-
tions in the database affects the query output is an important
task to many applications [28, 30, 35]. For instance, airline
companies need to search for a new flight that can meet the
requirements of popular trips. Sales companies should iden-
tify the critical part in the production tominimize the number
of orders affected by this part. Besides these examples for
query explanations, applications of the state-of-the-art pri-
vacy guarantee – differential privacy [20] – also need to add
sufficient amount of noise to hide the change in the query
output due to adding or removing a tuple. In particular, given
a database instance D, the maximum change to the query
output when one of the given tables in the database adds or
deletes a tuple is known as the local sensitivity of query onD,
and the tuple that matches this maximum change is known
as the most sensitive tuple in the domain of this database.
Computing the local sensitivity of queries on a single

relation is trivial, but it is challenging for queries that in-
volve joins of multiple relations. These queries join several
relations (the base relations or transformed relations) into a
single table and count the number of tuples in the join output
that satisfy certain predicates. For instance, to compute the
number of possible connecting flights for a multi-city trip
requires a join of flights from the given cities. Prior work
on provenance for queries and deletion propagation [7, 14]
focus on removing a tuple in the database, but adding new
tuples from the full domain is equally important and even
harder especially for complex queries over large domains.

Therefore, we aremotivated to study the local sensitivity
problem for counting queries with joins. In particular,
given a conjunctive counting query 𝑄 and a database in-
stance D, we would like to find the local sensitivity of 𝑄
on D and find a tuple 𝑡∗ from the full domain whose sensi-
tivity matches the local sensitivity. We make the following
contributions to this local sensitivity problem.
• We show that it is NP-hard to find local sensitivity of a

conjunctive query in terms of the size of the query, even
for the class of acyclic queries.

• We find an efficient algorithm to solve the sensitivity
problem and find the most sensitive tuple for path join
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queries, in polynomial time in combined complexity [44],
irrespective of the output size. This is particularly interest-
ing as the well-known algorithms for acyclic and path
join queries [47] run in polynomial time in both the size
of the input and also the output.

• We present an algorithm, TSens, that efficiently finds the
most sensitive tuple for full acyclic conjunctive queries
without self-joins using join trees, and for a sub-class of
general conjunctive queries through extensions using
generalized hypertree decompositions. TSens runs in poly-
nomial time in both the size of the database and query for
an interesting sub-class of queries, which we call ‘dou-
bly acyclic queries’ that generalizes path queries, and
in polynomial time in combined complexity when the
maximum degree in the join tree is bounded.
This paper also shows an application of our proposed

technique TSens for differential privacy. An algorithm
satisfies differential privacy if its output is insensitive to
adding or removing a tuple in any possible input database.
This is usually achieved by injecting a sufficient amount of
noise to the mechanism in order to hide the changes caused
by the most sensitive tuples from the domain. Hence, the
utility of the mechanisms crucially depends on the upper
bound of the local sensitivity. For general SQL counting
queries with joins, current methods either offer no efficient
or systematic solutions for computing sensitivity [13, 17, 29]
or severely overestimate the sensitivity resulting in poor
accuracy [26]. Moreover, some queries are highly sensitive
to adding or removing a tuple, and approaches that just add
noise calibrated to the sensitivity fail to offer any utility.
In this paper, we combine TSens with an effective and

general-purpose technique for DP query answering, called
truncation. Here the query is run on a truncated version of
the database where tuples resulting in high sensitivity are
removed. While this introduces error in the query answer
(bias), it decreases the sensitivity and the noise added, and
thus, the overall error. While prior work has used trunca-
tion [30, 35], obtaining high accuracy is challenging as it is
nontrivial to determine which tuples to truncate. We show
TSens can solve this challenge:
• Our algorithm TSens is able to compute the sensitivity of

each tuple in the domain. This allows us to develop a new
truncation-based differentially privatemechanism (called
TSensDP) to answer complex SQL queries by truncating
a proper set of sensitive tuples.

• TSens provides tight estimates on the local sensitivity
(as much as 2.2 million times better than the state of
the art techniques for sensitivity estimation [27]). More-
over, TSensDP answers queries with significantly lower
error than PrivSQL [30], a state of the art method for
answering SQL queries.

Organization: We discuss preliminaries and state the prob-
lem in Section 2. We discuss the complexity of our problem
in Section 3. Section 4 and 5 respectively give algorithms
for path join and acyclic conjunctive queries with possible
extensions. These algorithms are used to construct a differ-
entially private mechanism in Section 6. Section 7 presents
an experimental evaluation of our approach. Related work
and future direction are discussed in Sections 8 and 9.

2 PRELIMINARIES

We consider a database instance D with𝑚 tables 𝑅1, . . . , 𝑅𝑚 .
Relation 𝑅𝑖 has attributes A𝑖 where 𝑘𝑖 = |A𝑖 |, and 𝑛𝑖 tuples.
Database D has attributes AD = ∪𝑚

𝑖=1A𝑖 , and 𝑘 = |AD | and
𝑛 =

∑𝑚
𝑖=1 𝑛𝑖 denotes the total number of attributes and tuples

respectively in D. For any attribute 𝐴 ⊆ AD , we use Σ𝐴 as
the domain of 𝐴. For multiple attributes A = {𝐴1, . . . , 𝐴ℓ } ⊆
AD , the domain is ΣA = Σ𝐴1 × . . . × Σ𝐴ℓ . For a tuple 𝑡 ∈ 𝑅𝑖
and attribute 𝐴 ∈ A𝑖 , 𝑡 .𝐴 denotes the value of attribute in 𝑡 ,
and for A ⊆ A𝑖 , 𝑡 .A denotes a list of values of the attributes
in A with an implicit order.

Full conjunctive queries without self-joins. We focus
on counting queries that counts the number of output tuples
(in bag semantics) for the class of full conjunctive queries
(CQ) without self-joins1, which is equivalent to the natural
join in the SQL semantics (equal values of common attributes
in different relations) and has been extensively studied in
the literature [8, 16, 25]. A CQ 𝑄 can be written as a datalog
rule as:

𝑄 (AD): −𝑅1 (A1), 𝑅2 (A2), . . . , 𝑅𝑚 (A𝑚).

Here all the attributes AD appear in the head of the dat-
alog rule, and A𝑖 ∩ A𝑗 ≠ ∅ captures natural join. We also
call attributes as variables and relations as atoms. We inter-
changeably use the equivalent relational algebra (RA) form:

𝑄 = 𝑅1 Z · · · Z 𝑅𝑚 .

where Z with no subscripts refer to natural joins. We de-
note 𝑄 (D) as the query result about 𝑄 on D. For example,
in Figure 1, given 4 relations (𝑅1, 𝑅2, 𝑅3, 𝑅4) and attributes
(𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹 ), where each attribute has a domain of size 2,
the natural join of these relations 𝑄 (𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹 ) has an
output of a single tuple (𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑒1, 𝑓 1) (Figure 1(b)).

2.1 Problem Statement

Tuple and Local Sensitivity. Tuple and local sensitivity of
a counting query measure the (maximum) possible change
in the number of output tuples when a tuple is added to the
database or is removed from the database, and are defined as

1Note that CQs can include the selection operator by adding predicates of
the form 𝐴 = 𝑎, which we discuss in Section 5.4.



follows. For two relations𝑅, 𝑅′with the same set of attributes,
𝑅Δ𝑅′ = (𝑅 − 𝑅′) ∪ (𝑅′ − 𝑅) is the symmetric set difference.

Definition 2.1 (Tuple Sensitivity). Given a tuple 𝑡 from
the domain of any table as 𝑡 ∈ ΣA1 ∪ ΣA2 . . . ∪ ΣA𝑚 , a query
𝑄 , and a database instance D,
• upward tuple sensitivity is:

𝛿+ (𝑡,𝑄,D) = |𝑄 (D ∪ {𝑡}) Δ 𝑄 (D)|
• downward tuple sensitivity is:

𝛿− (𝑡,𝑄,D) = |𝑄 (D) Δ 𝑄 (D \ {𝑡}) |
• tuple sensitivity is:

𝛿 (𝑡,𝑄,D) = max (𝛿+ (𝑡,𝑄,D), 𝛿− (𝑡,𝑄,D))
We often drop 𝑡 , 𝑄 , and D and simply use 𝛿+, 𝛿−, or 𝛿 .

Definition 2.2 (Local Sensitivity). Given a query𝑄 and
a database instance D, the local sensitivity is defined as the
maximum tuple sensitivity:

𝐿𝑆 (𝑄,D) = max
𝑡 ∈ΣA1∪ΣA2 ...∪ΣA𝑚

𝛿 (𝑡,𝑄,D)

Example 2.1. In Figure 1, the tuple (𝑎1, 𝑏1, 𝑐1) in 𝑅1 has a
downward tuple sensitivity of 1 as removing this tuple will de-
crease the join output size by 1. Similarly, the tuple (𝑎2, 𝑏2, 𝑐1)
from the full domain of 𝑅1 has a downward tuple sensitivity of
0 as no such tuple exists in the given database instance. On the
other hand, the tuple (𝑎2, 𝑏2, 𝑐1) has an upward tuple sensi-
tivity 4, as adding this tuple will increase the output size by 4.
To compute the local sensitivity of this query on the database
instance given in Figure 1, we need to find the largest possible
change to the output size when adding or removing any possi-
ble tuple from the domain. The local sensitivity of this query
equals to 4, and the most sensitive tuple is (𝑎2, 𝑏2, 𝑐1) in 𝑅1.

Definition 2.3 (The Local Sensitivity Problem).
Given a query 𝑄 and a database instance D, the local sen-
sitivity problem aims to find the local sensitivity 𝐿𝑆 (𝑄,D)
of 𝑄 on D, and also find a tuple 𝑡∗ whose tuple sensitivity
matches the local sensitivity.

The problem is trivial when there is only one relation 𝑅

in the database and 𝑄 (𝑅) = 𝑅, since the local sensitivity is
always 1 and any tuple can be the most sensitive tuple. In this
paper, we focus on full CQs on multiple relations involving
multiple joins.

2.2 Acyclic Queries

One sub-class of CQs that has been studied in depth in the
literature is the class of acyclic queries [3, 11, 23], which
we consider as one of the classes of queries in this paper.
There are different notions of acyclicity [23], however, in
this paper we will use one of the standard notions based on
GYO decompositions (from Graham-Yu-Ozsoyoglu) [3].

Given a CQ 𝑄 , the query hypergraph has all the variables
or attributes as vertices, and relations appearing in the body
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Figure 1: An example for a full conjunctive query
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Figure 2: The GYO decomposition of the query in Fig-

ure 1 (left) and the resulted join tree (right). Here

R3(AE), R4(BF) and R4(ABD) are all ears of R1(ABC),

so we remove them from the hypergraph and connect

them to R1(ABC) in the join tree.

of the query as edges. An ear is a hyperedge ℎ whose ver-
tices can be divided into two groups that (i) either exclusively
belong toℎ, or (ii) are completely contained in another hyper-
edge ℎ′. The GYO-decomposition algorithm repeatedly picks
an ear from the hypergraph, removes the vertices that are
exclusively in the ear, and then removes the ear from the hy-
pergraph, until the hypergraph is empty or no more ears are
found. A CQ is acyclic if the GYO-decomposition algorithm
returns an empty hypergraph. Further, the decomposition
algorithm results in a join-tree, which will be described next
(assuming the query hypergraph is connected, otherwise a
join-forest is obtained).

Join-trees. A join-tree 𝑇 for a CQ whose hypergraph is
connected satisfies the following property: for any two re-
lations 𝑅𝑖 , 𝑅 𝑗 appearing in the body of the query such that
A𝑖 ∩ A𝑗 ≠ ∅, all attributes in the intersection appear on a
unique path from 𝑅𝑖 to 𝑅 𝑗 in the tree. A join-tree can be
obtained for an acyclic query from a GYO-decomposition
by adding an edge from relation 𝑅𝑖 to another relation 𝑅 𝑗 ,
when the hyperedge for 𝑅𝑖 is being eliminated as an ear, and
all the vertices that do not exclusively belong to 𝑅𝑖 belong
to 𝑅 𝑗 . It is well-known that joins on acyclic queries can be
computed in polynomial time in the size of the query and the
input (combined complexity, see Section 3). The output can
be generated by two passes on a join-tree using semi-join
operators [3]. Figure 2 shows the hypergraph of the query
𝑄 (𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹 ) in Figure 1 and its GYO decomposition.

3 COMPLEXITY ANALYSIS

Query, Data, and Combined Complexity. For evaluation
of database queries, both the query size (the number of re-
lations and attributes as𝑚 and 𝑘) and the instance size (the
number of tuples 𝑛) are inputs, and therefore based on the



parameters that are considered as variables, three different
notions of complexity are considered [44]. Query or expres-
sion complexity treats the query size (𝑚,𝑘) as a variable and
the data size (𝑛) as a constant. Data complexity treats data
size as a variable and query size as a constant, whereas com-
bined complexity treats both query and data size as variables.
It is known that even query evaluation for general CQs is NP-
hard for query and combined complexity (e.g., by a simple
reduction from clique), but has polynomial data complexity.

3.1 Polynomial Data Complexity

The naive solution of computing the local sensitivity is to
check the tuple sensitivity of all possible tuples from all
tables. While for downward tuple sensitivity, we need to
consider deletions of at most 𝑛 tuples from the database, for
the upward tuple sensitivity when we consider inserting
a tuple, the domain of a possible tuple can be arbitrarily
larger than 𝑛 (and even infinite if any attribute has infinite,
e.g., integer domain). However, we show below that we can
always have a polynomial data complexity by narrowing
down the domain of interest.
Active domain of an attribute with respect to a given in-

stance typically refers to the set of values of that attribute
appearing in the instance. In our context, given an instance
D, a relation 𝑅𝑖 in D, and an attribute 𝐴 ∈ A𝑖 , we use
Σ𝐴,𝑖𝑎𝑐𝑡 = ∪𝑡 ∈𝑅𝑖 𝑡 .𝐴 ⊆ ΣA𝑖 to denote the active domain of𝐴 with
respect to 𝑅𝑖 in D. If an attribute 𝐴 appears in two relations
𝑅𝑖 , 𝑅 𝑗 , it may happen that Σ𝐴,𝑖𝑎𝑐𝑡 ≠ Σ𝐴,𝑗𝑎𝑐𝑡 .

For the upward tuple sensitivity, we only consider tuples
that can possibly change the result after the insertion, so
its attribute values should appear in all other relations. We
define representative domain to capture this intuition:

Definition 3.1 (Representative domain). Given an
instance D, a relation 𝑅𝑖 in D, and an attribute 𝐴 ∈ A𝑖 , we
define the representative domain of 𝐴 with respect to 𝑅𝑖 as
Σ𝐴,𝑖𝑟𝑒𝑝𝑟 =

⋂
𝑗 : 𝐴∈A𝑗 , 𝑗≠𝑖

Σ𝐴,𝑖𝑎𝑐𝑡 , if𝐴 appears in at least two relations,
and set it as {𝑎} for any arbitrary value 𝑎 ∈ Σ𝐴,𝑖𝑎𝑐𝑡 , if 𝐴 does
not appear in any other relation.
The representative domain for a relation 𝑅𝑖 , denoted by

ΣA𝑖𝑟𝑒𝑝𝑟 ⊆ ΣA𝑖 , is defined as ΣA𝑖𝑟𝑒𝑝𝑟 = Σ𝐴1,𝑖
𝑟𝑒𝑝𝑟 × . . . × Σ

𝐴𝑘𝑖
,𝑖

𝑟𝑒𝑝𝑟 where
A𝑖 = {𝐴1, · · · , 𝐴𝑘𝑖 } are the attributes in 𝑅𝑖 .

Example 3.1. From Figure 1, the representative domain of𝐴
in 𝑅1 is Σ𝐴,1𝑟𝑒𝑝𝑟 = Σ𝐴,2𝑎𝑐𝑡 ∩ Σ𝐴,3𝑎𝑐𝑡 = {𝑎1, 𝑎2} ∩ {𝑎1, 𝑎2} = {𝑎1, 𝑎2}

We show the following theorem (proof in full version [42]).

Theorem 3.1. The local sensitivity of a full CQ 𝑄 with
respect to a given instance D can be computed in polynomial
time in data complexity.

3.2 Combined Complexity: NP-hardness

Theorem 3.1 shows that the sensitivity problem has polyno-
mial data complexity, but the algorithm may run in 𝑂 (𝑚𝑛𝑘 )
time, which is inefficient even for a small number of rela-
tions and attributes. Therefore, in this section, we study the
combined complexity for the problem and show that the
exponential dependency on the query size is essential under
standard complexity assumptions not only for general CQs,
but also for acyclic queries, thereby motivating the study
of efficient, practical algorithms for the sensitivity problem
discussed in the subsequent sections.

Theorem 3.2. Given a CQ 𝑄 and a database D as input,
the sensitivity problem is NP-hard in combined complexity.
In particular, checking whether 𝐿𝑆 (𝑄,D) > 0 is NP-hard for
combined complexity even if 𝑄 is acyclic.

The proof is deferred to the full version [42] and some
intuitions of hard acyclic queries are discussed in Section 5.2.
Although Theorem 3.2 gives a negative result even for acyclic
queries, the proof suggests that we may get polynomial-time
for special classes of acyclic queries. Indeed, as we show in
Sections 4 and 5, we can get polynomial combined complex-
ity for the sensitivity problem for path queries, and for an
interesting sub-class that we call doubly acyclic queries. The
algorithm uses join trees and works for other full acyclic CQ.
It gives polynomial running time in combined complexity
when the max degree in the join tree is bounded and can be
extended to certain non-acyclic CQs.

4 PATH JOIN QUERY

In this section, we give an efficient algorithm for a special
class of acyclic queries called path join queries or path queries
that run in polynomial time in combined complexity, irre-
spective of the output size (note that the polynomial combined
complexity for query evaluation of acyclic and path queries
is polynomial in input query, input database, and also the
output size, which can be exponential in the query size). A
path join query has the following form:

𝑄path (AD): −𝑅1 (𝐴0, 𝐴1), 𝑅2 (𝐴1, 𝐴2), . . . , 𝑅𝑚 (𝐴𝑚−1, 𝐴𝑚)
where AD = {𝐴0, 𝐴1, . . . , 𝐴𝑚} and each relation 𝑅𝑖 con-
tains two attributes: 𝐴𝑖−1 and 𝐴𝑖 . Note that the above form
can be used when two adjacent relations share more than
one attribute, since we can replace multiple attributes with
a single attribute using combinations of values for multi-
ple attributes. Path joins can capture natural joins in many
scenarios, like joining Students, Enrollment, Courses,
TaughtBy, Instructors, · · · relations, or, joining Region,
Nation, Customer, Orders, and Lineitem (e.g., in TPC-
H data, see Section 7). In addition, our algorithm for path
join queries will give the basic ideas of our algorithms that
can handle general CQs discussed in Section 5.
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Figure 3: A path join query 𝑄path−4 (𝐴, 𝐵,𝐶, 𝐷, 𝐸) :
−𝑅1 (𝐴, 𝐵), 𝑅2 (𝐵,𝐶), 𝑅3 (𝐶, 𝐷), 𝑅4 (𝐷, 𝐸) and the procedure

of computing tuple sensitivities from 𝑅2.

4.1 Intuition

First, we discuss the basic idea of our algorithm using a toy
example of a path query in Figure 3 with four relations:

𝑄path−4 (𝐴, 𝐵,𝐶, 𝐷, 𝐸) : −𝑅1 (𝐴, 𝐵), 𝑅2 (𝐵,𝐶), 𝑅3 (𝐶, 𝐷), 𝑅4 (𝐷, 𝐸)

The number of output tuples affected by adding or removing
a tuple 𝑡 to any of the relations 𝑅𝑖 depends on the number
of ways in which 𝑡 can combine with tuples, or in this case
‘join-paths’, from the remaining relations. Recall that we
are using bag semantics from Section 2, so a ‘join-path’ can
repeat multiple times and lead to multiple output tuples.
Example 4.1. In Figure 3, if removing the tuple 𝑅2 (𝑏1, 𝑐1),

all the 4 tuples in the current answer of 𝑄path−4 (D) will be
removed. These 4 tuples are formed by the join between the 2
tuples from 𝑅1 (the “incoming” paths ending at 𝑏1) and the
2 tuples from 𝑅3 ⊲⊳ 𝑅4 (the “outgoing” paths starting at 𝑐1).
On the other hand, if the initial 𝑅2 does not have the tuple
(𝑏1, 𝑐1), inserting (𝑏1, 𝑐1) to 𝑅2 will add 4 new tuples to the
query answer.

It is easy to see that the sensitivity of adding or removing
a tuple (𝑎𝑖 , 𝑏𝑖 ) ∈ 𝑅𝑖 is the product of the number of incoming
paths ending in 𝑎𝑖 and the number of outgoing paths starting
in𝑏𝑖 . However, computing sensitivity by enumerating all join
paths is inefficient since the number of incoming/outgoing
paths can be exponential in the number of relations (and
thus not polynomial in combined complexity). We also need
to consider tuples that are from the active domain or can
possibly connect a new path, further worsening the run-
time. Hence, we propose the following algorithm to avoid
repeated query evaluation and capture the effects of adding
and removing tuples simultaneously.

4.2 Efficient Algorithm for Path Queries

To efficiently represent the data, we first append each relation
with an additional attribute cnt to record the multiplicity of
the other attribute values in that relation. To keep track of

the multiplicity of the incoming paths and outgoing paths
for the tuples in 𝑅𝑖 , we define the following terms.

Topjoin and botjoin. We define topjoin ⊤(𝑅𝑖 ) and botjoin
⊥(𝑅𝑖 ) for 𝑅𝑖 as follows, which respectively compute the mul-
tiplicities of the values of attribute 𝐴𝑖−1 for the partial path
joins from 𝑅1 to 𝑅𝑖−1, and 𝑅𝑖 to 𝑅𝑚 .

⊤(𝑅𝑖 ) = 𝛾𝐴𝑖−1
(
⊲̃⊳(𝑅1, . . . , 𝑅𝑖−1)

)
(1)

⊥(𝑅𝑖 ) = 𝛾𝐴𝑖−1
(
⊲̃⊳(𝑅𝑖 , . . . , 𝑅𝑚)

)
(2)

The notation ⊲̃⊳(𝑅𝑖 , . . . , 𝑅 𝑗 ) for 𝑗 > 𝑖 used above is a short-
hand of two steps: (a) a natural join among 𝑅𝑖 , 𝑅𝑖+1, . . . , 𝑅 𝑗

except the attributes cnt, and (b) a projection of the prod-
uct of these multiplicity attributes cnt to a new multiplic-
ity column2, i.e., abusing RA expressions: ⊲̃⊳(𝑅𝑖 , . . . , 𝑅 𝑗 ) =

𝜋A𝑖 ,...,A𝑗 ,(𝑅𝑖 .cnt×···×𝑅 𝑗 .cnt)→cnt (𝑅𝑖 Z . . . Z 𝑅 𝑗 ). The group-by
operation 𝛾A (𝑅) computes groups according to a set of at-
tributes A ⊆ A𝑅 , and also sums the counts as the new count
attribute, i.e., 𝛾A (𝑅) = 𝛾A, 𝑠𝑢𝑚 (cnt)→cnt (𝑅).
Example 4.2. In Figure 3, the topjoin for 𝑅2 is ⊤(𝑅2) =

𝛾𝐵 (𝑅1) = {(𝐵 : 𝑏1, cnt : 2)} and the botjoin for 𝑅3 is ⊥(𝑅3) =
𝛾𝐶 (⊲̃⊳(𝑅3, 𝑅4)) = {(𝐶 : 𝑐1, cnt : 2)}. In order to compute the
maximum change to the query output by adding/removing a
tuple (𝑏1, 𝑐1) to/from 𝑅2, we can multiply the cnt of 𝑏1 from
⊤(𝑅2) and the cnt of 𝑐1 from ⊥(𝑅3), i.e., 2 ∗ 2 = 4. This is
the largest possible change to the query answer if adding or
removing a tuple to 𝑅2, as the multiplicities of the other values
are all smaller than the cnt of 𝑏1 and the cnt of 𝑐1.

Hence, to compute the most sensitive tuple 𝑡∗𝑖 within each
𝑅𝑖 just requires the tuple 𝑡⊤𝑖 from ⊤(𝑅𝑖 ) with the largest
multiplicity and the tuple 𝑡⊥𝑖 from ⊥(𝑅𝑖 ) with the largest
multiplicity, i.e.,

𝑡⊤𝑖 = argmax
𝑡 ∈⊤(𝑅𝑖 )

𝑡 .cnt and 𝑡⊥𝑖 = argmax
𝑡 ∈⊥(𝑅𝑖+1)

𝑡 .cnt (3)

Then 𝑡∗𝑖 takes (𝑡⊤𝑖 .𝐴𝑖−1, 𝑡⊥𝑖 .𝐴𝑖 ) and its sensitivity takes
(𝑡⊤𝑖 .cnt ∗ 𝑡⊥𝑖 .cnt). For 𝑅1, the most sensitive tuple 𝑡∗1 .𝐴1 can
be derived from the most sensitive tuple in ⊥(𝑅2) and 𝑡∗1 .𝐴0

can take any values. Similarly, for 𝑅𝑚 , the most sensitive
tuple 𝑡∗𝑚 .𝐴𝑚−1 can be derived from the most sensitive tuple
in ⊤(𝑅𝑚) and 𝑡∗𝑚 .𝐴𝑚 can take any values. The most sensitive
tuple can be identified from these𝑚 tuples (𝑡∗1, . . . , 𝑡∗𝑚).
The two relations ⊤(𝑅𝑖 ) and ⊥(𝑅𝑖 ) for deriving 𝑡∗𝑖 do not

share any attribute, so their join is equivalent to a cross
product. Hence, we are not only getting the tuples in the
active domain of 𝑅𝑖 , but also considering all the tuples from
its representative domain (Definition 3.1) that can lead to a
non-zero local sensitivity by joining with tuples in the other
relations, which takes care of both upward and downward

tuple sensitivities.

2A more systematic way to propagate the multiplicity for arbitrary queries
has been discussed in the literature, e.g., [6, 7].



Algorithm. Explicitly computing topjoin (1) and botjoin
(2) can require exponential combined complexity, so we give
an iterative approach in Algorithm 1 to compute them in
polynomial combined complexity. We first compute ⊤(𝑅2)
as a base case in the way as topjoin is defined in equation
(1). Next, we iteratively compute ⊤(𝑅𝑖 ) for 𝑖 = 3 to m in the
algorithm. As in the efficient query evaluation for acyclic
queries[3], we use sort-merge joins to compute the pairwise
joins and the then groupby (sort both relations on the join
column, join together, then groupby and add the cnt val-
ues). which can be implemented in 𝑂 (𝑛𝑖 log𝑛𝑖 ) time as 𝑅𝑖−1
can join at most one tuple in ⊤(𝑅𝑖−1). We apply a similar
approach to compute botjoin for all relations. In total it takes
𝑂 (𝑛 log𝑛) time.

After preparing topjoin and botjoin, the third step is to
combine them together and find the most sensitive tuple. We
first find the tuple 𝑡⊤𝑖 from ⊤(𝑅𝑖 ) with the highest count and
the tuple 𝑡⊥𝑖 from ⊥(𝑅𝑖 ) with the highest count (Eqn. (3)).
Then using these tuples, we can construct the most sensitive
tuple 𝑡∗𝑖 and its sensitivity for each 𝑇 𝑖 and identify the most
sensitive tuple. Note that finding the tuple with the highest
count in any of these relations can be done in 𝑂 (𝑛𝑖 ) time,
taking 𝑂 (𝑛) time in total. Therefore, the following theorem
holds (formal correctness and complexity proofs are deferred
to the full version [42] due to lack of space):

Theorem 4.1. Algorithm 1 solves the sensitivity problem
and finds the most sensitive tuple for path join queries. The time
complexity is 𝑂 (𝑛 log𝑛) where 𝑛 is the size of the database
instance irrespective of the size of the output.

Connection with Yannakakis’s algorithm [47]: Algo-
rithm 1 is inspired by Yannakakis’s algorithm [47] that com-
putes join results for acyclic queries in (near)-linear time
in the size of the input and output, and can be adapted to
compute the join size in near-linear 𝑂 (𝑛 log𝑛) time only in
the input size 𝑛 in a single pass. In Algorithm 1, we make
two passes to compute intermediate topjoins and botjoins,
and hence have a similar complexity. We note that, however,
this is the total time complexity for sensitivity computation
considering all possible tuple additions and deletions from
all relations. If we naively repeat the 𝑂 (𝑛 log𝑛) time algo-
rithm inspired by [47] to compute the output join size for
all possible tuple deletions, the time would be multiplied by
𝑛. Further, if we repeat this algorithm for all possible tuple
insertions using the representative domain in Definition 3.1,
the time would be (approximately) multiplied by a factor of
𝑂 (𝑛2). Algorithm 1 provides an approach to the sensitivity
problem using ideas from [47] in 𝑂 (𝑛 log𝑛) time for path
queries (we compare these experimentally in Section 7.2.)

However, the above theorem is not generalizable to even
all acyclic queries (recall Theorem 3.2). In the next section, we
give algorithms that can handle acyclic CQs in parameterized

Algorithm1Compute Local Sensitivity of a Path Join Query
and the corresponding Most Sensitive Tuple
Input: Path query 𝑄path (𝐴0 . . . 𝐴𝑚), the database instance D
Output: 𝐿𝑆 (𝑄,D), and a most sensitive tuple 𝑡∗
1: procedure LSPathJoin

I) Prepare topjoin
2: ⊤(𝑅2) = 𝛾𝐴1

𝑅1 /* also adds the cnt values */
3: for 𝑖 = 3, . . . ,𝑚 do

4: ⊤(𝑅𝑖 ) = 𝛾𝐴𝑖−1 ⊲̃⊳(⊤(𝑅𝑖−1), 𝑅𝑖−1) /* also multiplies and
adds the cnt values */

5: end for

II) Prepare botjoin
6: ⊥(𝑅𝑚) = 𝛾𝐴𝑚−1𝑅𝑚 /* also adds the cnt values */
7: for 𝑖 =𝑚 − 1, . . . , 2 do

8: ⊥(𝑅𝑖 ) = 𝛾𝐴𝑖−1 ⊲̃⊳(⊥(𝑅𝑖+1), 𝑅𝑖 ) /* also multiplies and adds
the cnt values */

9: end for

III) Select most sensitive tuple
10: for 𝑖 = 1, . . . ,𝑚 do

11: 𝑡⊤
𝑖

= argmax𝑡 ∈⊤(𝑅𝑖 ) 𝑡 .cnt
12: 𝑡⊥

𝑖
= argmax𝑡 ∈⊥(𝑅𝑖+1) 𝑡 .cnt

13: 𝑡∗
𝑖
= (𝑡⊤

𝑖
.𝐴𝑖−1, 𝑡⊥𝑖 .𝐴𝑖 ) with sensitivity cnt = (𝑡⊤

𝑖
.cnt ∗

𝑡⊥
𝑖
.cnt) /* when 𝑖 = 1 (or 𝑖 = 𝑚), 𝐴0 and 𝐴𝑚 takes any value

and 𝑡⊤
1
.cnt = 𝑡⊥𝑚 .cnt = 1. */

14: end for

15: 𝑡∗ = argmax𝑖=1,...,𝑚 𝑡∗
𝑖
.cnt

16: 𝐿𝑆 = 𝑡∗ .cnt
17: return 𝐿𝑆, 𝑡∗

18: end procedure

polynomial time and run in sub-quadratic time for a class
called ‘doubly acyclic queries’ that generalizes path queries.

5 ACYCLIC AND OTHER JOIN QUERIES

In this section, we discuss a general solution to acyclic
queries (Section 5.1), and then present an efficient algorithm
with additional parameters in the running time complexity
of the algorithm (Section 5.2). In Section 5.3, we show that
a class of queries that we call doubly-acyclic queries has a
polynomial combined complexity. Last, we discuss several
extensions of this algorithm to general cases.
We consider queries with no self joins; i.e., there are no

duplicated relations in the query body. For simplicity, we
assume an acyclic full CQ of the following form:

𝑄acy (AD) : −𝑅1 (A1), . . . , 𝑅𝑚 (A𝑚).

We assume that the query hypergraph (Section 2.2) is con-
nected. We also assume that each attribute appears in at least
two relations in the body; further, there are no selections in
the body, and no projections in the head of the query, i.e.,
AD = ∪𝑚

𝑖=1A𝑖 , and the total number of attributes |AD | is
𝑘 . These assumptions, except the no-self-join assumption
(which introduces new challenges and we leave it as a future



direction), are without loss of generality as how they can be
relaxed using our algorithm is discussed in Section 5.4.

5.1 Basic Idea using Join Trees

Similar to a path join query, the sensitivity of adding or re-
moving a tuple in a relation depends on the number of the
incoming/outgoing paths to/from this tuple. To compute the
multiplicity of these paths, we represent an acyclic query us-
ing a join tree constructed from its GYO decomposition (Sec-
tion 2.2). For example, given the join tree for a join between
12 relations in Figure 4, in order to compute the sensitivity of
tuples in 𝑅8 (node 8), we need to construct the join between
two groups of relations: (i) the set of relations that are not
the descendants of node 8, i.e., {11, 12, 9, 10, 1, 2, 7, 3, 4} — the
incoming paths and (ii) the relations rooted at node 8, i.e.,
{5, 6} — the outgoing paths.
Formally, we denote this join tree derived based on GYO

decomposition as T (𝑉 , 𝐸), where the nodes in the tree 𝑉 =

{𝑅1, . . . , 𝑅𝑚} correspond to relations in the query. Let 𝑝 (𝑅 𝑗 )
denote the parent of node 𝑅 𝑗 in the join tree, 𝐶 (𝑅 𝑗 ) denote
the children of 𝑅 𝑗 , and 𝑁 (𝑅 𝑗 ) denote the neighbors or siblings
of 𝑅 𝑗 , i.e. 𝑁 (𝑅 𝑗 ) = 𝐶 (𝑝 (𝑅 𝑗 )) \ {𝑅 𝑗 }. We denote T (𝑅 𝑗 ) as the
relations in the subtree rooted at 𝑅 𝑗 , while T 𝑐 (𝑅 𝑗 ) is the set
of relations in the complement of T (𝑅 𝑗 ) on the tree T (𝑉 , 𝐸).
Example 5.1. In Figure 4, the complementary tree of 𝑅8,

T 𝑐 (𝑅8), includes {11, 12, 9, 10, 1, 2, 7, 3, 4} and the subtrees at
the children of 𝑅8 are leaf node 5 and leaf node 6. Computing
the joins of these relations can be exponential in the num-
ber of the relations or the number of attributes (and thus not
have a polynomial combined complexity). We propose an algo-
rithm to make two passes on T to efficiently track the incom-
ing/outgoing paths.

5.2 Efficient Algorithm for Acyclic Queries

Topjoin and botjoin. To compute the sensitivity of the
tuples in 𝑅𝑖 , we need to evaluate the join between two groups
of relations: (i) the complementary tree of 𝑅𝑖 , and (ii) the
subtrees rooted at the children of 𝑅𝑖 . These two groups of
relations can be represented as topjoin ⊤ and botjoin ⊥:

⊤(𝑅𝑖 ) = 𝛾A𝑖∩A𝑝 (𝑅𝑖 )
(⊲̃⊳(T 𝑐 (𝑅𝑖 ))) (4)

⊥(𝑅𝑖 ) = 𝛾A𝑖∩A𝑝 (𝑅𝑖 )
(⊲̃⊳(T (𝑅𝑖 ))) (5)

The operators ⊲̃⊳ and 𝛾 are the same as the ones used for path
queries in Section 4.2 which take into account multiplicities.

SinceT is a join tree, for each attribute𝐴, the relations that
contain 𝐴 always form a connected subtree. Hence, all the
attributes of 𝑅𝑖 that appear in the join tree should be either
in the attributes of its complementary tree or the attributes
of its descendants. Then applying group by according to the
attributes in 𝑅𝑖 , A𝑅𝑖 , on the join between all the remaining
relations gives us the sensitivities of all the tuples in the

T(R8)

Tc(R8)
p(R8)

R1 R2

R3 R4 R5 R6

R7 R8

R9 R10 R11

R12

p(R8)

R1 R2

R3 R4 R5 R6

R7 R8

R9 R10 R11

R12

⊤(R8) 
⊤(R11) 

⊥(R7)

⊥(R6)⊥(R5)

12
12

9 10 11

1 2 7 8

3 4 5 6

Tc(R8)

p(R8)

T(R8)

12

9 10 11

1 2 7 8

3 4 5 6

p(R8)

⊤(R11) ⊤(R8) 

⊥(R7) ⊥(R6)⊥(R5)

Figure 4: The given join tree consists of 12 relations.

The node with number 𝑖 means 𝑅𝑖 . The left figure

circles the subtree rooted at 𝑅8, T (𝑅8), and the com-

plementary subgraph of T (𝑅8), T 𝑐 (𝑅8). The right fig-

ure highlights that the multiplicity table of 𝑅8, 𝑇
8
, re-

quires the join between the topjoin of𝑅8,⊤(𝑅8) and the
botjoins of all its children, {⊥(𝑅5),⊥(𝑅6)}. The topjoin
of 𝑅8 can be iteratively computed from the join be-

tween the topjoin of the parent of 𝑅8, i.e., ⊤(𝑅11), and
the botjoins of the neighbors of 𝑅8, i.e., {⊥(𝑅7)}.
representative domain of 𝑅𝑖 , i.e.,

𝑇 𝑖 = 𝛾A𝑅𝑖

(
⊲̃⊳(⊤(𝑅𝑖 ), {⊥(𝑅 𝑗 ) | 𝑅 𝑗 ∈ 𝐶 (𝑅𝑖 )})

)
(6)

We name 𝑇 𝑖 the multiplicity table of 𝑅𝑖 . The expression for
𝑇 𝑖 is simpler if 𝑅𝑖 is the root or a leaf. We will discuss it in
the algorithm below.

Algorithm. Algorithm 2 takes as input the join tree T of
the acyclic query and database D . It first prepares botjoin
and topjoin for each node with an iterative approach. To
prepare botjoin ⊥(𝑅𝑖 ) (5), we start from the leaf nodes. The
botjoin of a leaf node 𝑅𝑖 is simply a group by on the common
attributes between 𝑅𝑖 and its parent node 𝑝 (𝑅𝑖 ) on 𝑅𝑖 . Next,
we compute ⊥ for other nodes in a post-order traversal of
the tree with this iterative formula:

⊥(𝑅𝑖 ) = 𝛾A𝑖∩A𝑝 (𝑅𝑖 )
(⊲̃⊳(𝑅𝑖 , {⊥(𝑅 𝑗 ) | 𝑅 𝑗 ∈ 𝐶 (𝑅𝑖 )})) (7)

For each ⊥(𝑅𝑖 ), the join starts with 𝑅𝑖 and follows by the
children of 𝑅𝑖 one by one.
Example 5.2. In Figure 4, we first compute the botjoins

for all the leaf nodes including ⊥(𝑅1), ⊥(𝑅2), ⊥(𝑅3),
⊥(𝑅4),⊥(𝑅5),⊥(𝑅6),⊥(𝑅10). Next, if all the children of a node
has a computed botjoin, then we can compute the botjoin of
this node, e.g. ⊥(𝑅8) = 𝛾A𝑅8∩A𝑅11 (⊲̃⊳ (⊲̃⊳(𝑅8,⊥(𝑅5)),⊥(𝑅6))),
where 𝑅5 and 𝑅6 are the children of 𝑅8, and 𝑅11 is the parent
of 𝑅8.
To prepare topjoin ⊤(𝑅𝑖 ), we start with the children of

the root node. The topjoin of each child 𝑅𝑖 of the root is the
join between the root and the botjoins of all its neighbors
followed by a group by on the common attributes between 𝑅𝑖
and the root. Next, we compute topjoin ⊤ for other nodes in
a pre-order traversal of the tree with this iterative formula:

⊤(𝑅𝑖 )=𝛾A𝑖∩A𝑝 (𝑅𝑖 )
(⊲̃⊳(𝑝 (𝑅𝑖 ),⊤(𝑝 (𝑅𝑖 )), {⊥(𝑅 𝑗 ) | 𝑅 𝑗 ∈ 𝑁 (𝑅𝑖 )})) (8)



Algorithm 2 Compute Local Sensitivity of an acyclic CQ
and the corresponding Most Sensitive Tuple
Input: Acyclic CQ 𝑄acy (AD ) as a join tree T , the database D
Output: 𝐿𝑆 (𝑄acy,D), and the most sensitive tuple 𝑡∗
1: procedure LSAcyclicJoin
2: I) Compute ⊥(𝑅𝑖 ) in post-order (leaf to root)

𝛾A𝑖∩A𝑝 (𝑅𝑖 )
(𝑅𝑖 ), if 𝑅𝑖 is leaf

𝛾A𝑖 ⊲̃⊳(𝑅𝑖 , {⊥(𝑅 𝑗 ) | 𝑅 𝑗 ∈ 𝐶 (𝑅𝑖 )}), if 𝑅𝑖 is root
𝛾A𝑖∩A𝑝 (𝑅𝑖 )

⊲̃⊳(𝑅𝑖 , {⊥(𝑅 𝑗 ) | 𝑅 𝑗 ∈ 𝐶 (𝑅𝑖 )}), o.w.

3: II) Compute ⊤(𝑅𝑖 ) in pre-oder (root to leaf)
∅, if 𝑅𝑖 is root
𝛾A𝑖∩A𝑝 (𝑅𝑖 )

⊲̃⊳(𝑝 (𝑅𝑖 ), {⊥(𝑅 𝑗 ) | 𝑅 𝑗 ∈ 𝑁 (𝑅𝑖 )}), if 𝑝 (𝑅𝑖 ) is root
𝛾A𝑖∩A𝑝 (𝑅𝑖 )

⊲̃⊳(𝑝 (𝑅𝑖 ),⊤(𝑝 (𝑅𝑖 )), {⊥(𝑅 𝑗 ) | 𝑅 𝑗 ∈ 𝑁 (𝑅𝑖 )}), o.w.

4: III) Prepare multiplicity tables 𝑇 𝑖 of nodes for 𝑖 = 1, . . . ,𝑚
𝛾A𝑖 (⊤(𝑅𝑖 )), if 𝑅𝑖 is leaf
𝛾A𝑖 ⊲̃⊳({⊥(𝑅 𝑗 ) | 𝑅 𝑗 ∈ 𝐶 (𝑅𝑖 )}), if 𝑅𝑖 is root
𝛾A𝑖 ⊲̃⊳(⊤(𝑅𝑖 ), {⊥(𝑅 𝑗 ) | 𝑅 𝑗 ∈ 𝐶 (𝑅𝑖 )}), o.w.

IV) Select the most sensitive tuple
5: 𝑡∗ = argmax𝑡 :𝑡 ∈𝑇 𝑖 ,𝑖=1,...,𝑚 𝑡 .cnt and 𝐿𝑆 = 𝑡∗ .cnt
6: return 𝐿𝑆, 𝑡∗

7: end procedure

For each ⊤(𝑅𝑖 ), the join starts with 𝑝 (𝑅𝑖 ) and ⊤(𝑝 (𝑅𝑖 )) and
follows by the botjoin of the neighbors of 𝑅𝑖 one by one. For
example, computing the topjoin of 𝑅8 in Figure 4 requires
the join of its parent 𝑅11, the topjoin of its parent ⊤(𝑅11),
and the botjoins of all its neighbors, here {⊥(𝑅7)}.
After preparing all the topjoins and botjoins, we com-

bine these results to obtain the multiplicity tables 𝑇 𝑖 for
𝑖 = 1, . . . ,𝑚 based on Eqn. (6). For instance, to compute 𝑇 8

in Figure 4, we join the topjoin of 𝑅8 and the botjoins of
all its children, {⊥(𝑅5),⊥(𝑅6)}. This does not require the
topjoins of the root node or the botjoins of the leaf nodes.
We iterate all the multiplicity tables𝑇𝑖 and find the tuple with
maximum cnt. This tuple is returned as the most sensitive
tuple with its cnt as the local sensitivity of this query on the
given database instance.

The runtime of the algorithm depends on the max degree
of the tree, which is the maximum children size + 1 (for a
non-root node including the parent) of any node in the tree.

Theorem 5.1. Algorithm 2 computes the local sensitivity of
an acyclic CQ and also finds the corresponding most sensitive
tuple. Given𝑚 tables with 𝑘 attributes in total, 𝑛 tuples in the
database instance, and a join tree of the query with max degree
𝑑 , the time complexity is 𝑂 (𝑚 𝑑 𝑛𝑑 log𝑛).

Proof. (sketch) If two nodes 𝑅𝑖 and 𝑅 𝑗 share a common
attribute𝐴, then all the nodes on the path between 𝑅𝑖 and 𝑅 𝑗

in the join tree also contain𝐴. Hence, the iterative equations

(7) and (8) correctly compute the botjoin (5) and topjoin (4)
by tracking multiplicities through common attributes.

Now we analyze the running time of the algorithm. Notice
that all joins in any topjoin equation (8) and botjoin equa-
tion (7) have at least one common join attribute, according
to the definition of join tree and the fact that the projection
of ⊤(𝑅𝑖 ) and ⊥(𝑅𝑖 ) is always the subset of A𝑖 and A𝑝 (𝑅𝑖 ) .
For botjoin (7), we join relations with 𝑅𝑖 one at a time us-
ing sort-merge-join and then do groupby count. The size
of each join is always ≤ 𝑛𝑖 since each tuple 𝑅𝑖 can join at
most one tuple from any botjoin of its children. In total, it
takes 𝑂 (𝑑𝑖𝑛𝑖 log𝑛𝑖 ) for each botjoin and 𝑂 (𝑚𝑛 log𝑛) for all
botjoins since the summation of 𝑑𝑖 is m and 𝑛𝑖 ≤ 𝑛.
Next we discuss the running time for step III) in Algo-

rithm 2. Unlike the computation for topjoins and botjoins,
this step requires joining the botjoins of all the children of a
node with the topjoin of that node 𝑅𝑖 , and all these partial
joins may not share any attributes in general (although all
the join attributes are still subsets ofA𝑖 ). Hence, for arbitrary
acyclic joins, there can be at most 𝑑 − 1 joins in this step for
each 𝑅𝑖 where 𝑑 is the max degree in T , which can be com-
puted in𝑂 (𝑛𝑑 log𝑛𝑑 ) = 𝑂 (𝑑𝑛𝑑 log𝑛) time even by the brute
force approach. The total time to compute the multiplicity
tables 𝑇 𝑖 for𝑚 relations is 𝑂 (𝑚𝑑𝑛𝑑 log𝑛). Hence, the total
time complexity is 𝑂 (𝑚𝑑𝑛𝑑 log𝑛). □

Similar to the discussion in Section 4.2, the computation of
botjoins ⊥(𝑅𝑖 ) and topjoins ⊤(𝑅𝑖 ) in Algorithm 2 is inspired
by Yannakakis’s algorithm [47], which can track counts of
intermediate tuples from the leaves to the root in a bottom-
up pass, whereas in the second top-down pass, we need
to traverse the join tree to compute the topjoins ⊤(𝑅𝑖 ). As
explained earlier for path queries, Algorithm 2 computes
changes in the join size for all possible tuple deletions and
additions, and naively repeating [47] to evaluate query in all
these cases does not give the desired complexity. In fact, [47]
works in near-linear time in the input size 𝑛 to output the
output join size for any acyclic join query (and has polyno-
mial combined complexity), whereas the sensitivity problem
is NP-hard in combined complexity even for acyclic queries
as stated in Theorem 3.2.
Given the NP-hardness result in Theorem 3.2, we next

show an example acyclic query that may take 𝜔 (𝑚𝑛) time
for the 𝑇 𝑖 step. Suppose we have an acyclic query as
𝑄 (𝐴, 𝐵,𝐶) : −𝑅1 (𝐴, 𝐵,𝐶), 𝑅2 (𝐴, 𝐵), 𝑅3 (𝐵,𝐶), 𝑅4 (𝐶,𝐴) and
we want to compute the multiplicity table 𝑇 1 for 𝑅1. Given
botjoins of 𝑅2 (𝐴, 𝐵), 𝑅3 (𝐵,𝐶) and 𝑅4 (𝐶,𝐴), we have a cyclic
join among them, and in worst the join size is 𝑂 (𝑛3/2) ac-
cording to the AGM bound [9]. In general, if we replace the
children with more complex queries, and if the number of
relations (or the degree) is larger, the time to compute this
join may be larger. Note that some of the complexity of this
problem comes from the bag semantics considered in our



model (that is also relevant for applications of sensitivity re-
lated to differential privacy), as for set semantics, changes in
the join size can be computed more efficiently when a tuple
is added or removed from a table. However, for bag seman-
tics, adding any tuple, say to 𝑅1, may increase the sensitivity
significantly for 𝑄 (product of the multiplicities of the edges
forming the triangle), which adds to the complexity.

5.3 Doubly Acyclic Join Queries

For an acyclic query, if there exists a join tree T constructed
from the GYO decomposition such that for each node 𝑅𝑖 in
T , the join between its parent 𝑝 (𝑅𝑖 ) and its children 𝐶 (𝑅𝑖 )
is also acyclic, then we say this query is a doubly acyclic join
query. Given this property, the computation of the multiplic-
ity table𝑇𝑖 for 𝑅𝑖 involves an acyclic join between the topjoin
and botjoins and hence has a time complexity𝑂 (𝑑𝑖𝑛𝑖 log𝑛𝑖 ),
where 𝑑𝑖 is the node degree of 𝑅𝑖 in T . Since the sum of
all node degrees is 𝑚 and 𝑛𝑖 ≤ 𝑛, the total time complex-
ity to compute 𝑇 𝑖 for all nodes is 𝑂 (𝑚𝑛 log𝑛). When 𝑑𝑖 is
a constant, such as at most 2, the complexity is written as
𝑂 (𝑛 log𝑛), which also matches the total runtime of Algo-
rithm 2 including the computation of topjoins and botjoins.
Notice that a path join query is a special case of doubly

acyclic join query, because for each 𝑅𝑖 , ⊤(𝑅𝑖 ) and ⊥(𝑅𝑖+1)
(assuming 𝑅𝑖+1 is the child of 𝑅𝑖 in T ) share no attributes.
and therefore is an acyclic join. The time complexity of path
join queries in Algorithm 1 also matches the time complexity
of doubly acyclic join queries.

5.4 Extensions

In this section, we briefly discuss how to extend our frame-
work relaxing the assumptions listed at the beginning of
Section 5, and we defer the details in a full version [42].
Selections: We can easily extend Algorithm 2 to handle

queries with arbitrary selection conditions (that can be ap-
plied to each tuple individually in any relation) in the body
of the query by assigning 0 sensitivity to the tuples fail the
selection condition.

Disconnected join trees: If the hypergraph of a query is not
connected, Algorithm 2 can be applied to each join tree and
merge them back to update each tuple sensitivity.

General joins: For a non-acyclic join query, if there exists
a generalized hypertree decomposition [5] such that each re-
lation is assigned to a node, Algorithm 2 can be extended
to compute multiplicity tables as including other relations
within the same node. The time complexity is parameter-
ized by the max number 𝑝 of relations within a node as
𝑂 (𝑚𝑝𝑑𝑛𝑝𝑑 log𝑛). This is implemented in our experiments;
q3 from TPC-H queries, and 𝑞△, 𝑞□ from Facebook queries
are all non-acyclic queries and their generalized hypertree
decompositions are shown in Figure 5.

Efficient approximations: We can extend our algorithm to
tradeoff accuracy in the sensitivity for better runtime. As our
experiment will show, the multiplicity tables that topjoins
and botjoins compute can grow quadratically or faster in the
input size depending on the query. To make the computation
scalable, we can maintain the top 𝑘 frequent values instead
of all the frequencies in the top and botjoins. We can set the
frequencies of the rest of the active values in the top and
botjoins to the kth largest frequency. This approach gives
an upper bound of tuple sensitivity but can speed up the
runtime.
Self Joins: Acyclic join queries with self-joins can not be

captured by our algorithms, because we only allow a re-
lation to appear once in the query. For each relation, we
compute the joins for the rest of relations to summarize how
tuples from this relation can affect the full join. A possible
workaround is to join the repeated base relations as a single
and combined relation, run our algorithm, and then link the
effect of adding or removing a tuple from the base relation to
the combined relation and the effect of adding or removing
a tuple from the combined relation to the rest. However, it is
challenging to find all possible insertions to the base relation
that allows the combined relation to join all possible pairs
of "incoming" and "outcoming" path. We defer this line of
research to future work.
Other: For attributes that appear only once in the query

body, we ignore them in Algorithm 2 but in the end we
extrapolate a value for these attributes.

6 USE IN DIFFERENTIAL PRIVACY

In this section, we will show how to use our algorithm TSens
(section 5.2) for computing sensitivity to develop accurate
differentially private algorithms. Section 6.1 gives a brief
overview of differential privacy (DP), and Section 6.2 dis-
cusses how the tuple sensitivity measures can be used to
develop accurate DP algorithms.

6.1 Differential Privacy

Differential privacy (DP) [19] is considered the gold standard
for private data analysis. An algorithm satisfies DP if its
output is insensitive to adding or removing a tuple in the
input database. Formally,

Definition 6.1 (Differential Privacy). A mechanism
M : 𝐼 → Ω is 𝜖-differentially private if for any two neighbor-
ing relational database instances D,D ′ ∈ 𝐼 and ∀𝑂 ⊆ Ω:

|ln(Pr[M(D) ∈ 𝑂]/Pr[M(D ′) ∈ 𝑂]) | ≤ 𝜖

When D is a single relation, all neighboring relations are
of the form D ′ = D − {𝑡}. When D is a multi-relational
database with foreign key constraints, then a neighboring
instance D ′ is gotten by deleting one tuple 𝑡 in D’s primary



private relation and cascadingly deleting other tuples that
depend on 𝑡 through foreign keys [30].

Differential privacy has been successfully used to publish
summary statistics, synthetic data, machine learning models,
and answer SQL queries [2, 26, 30, 35, 40, 43, 46] . It has
also been adopted at the government [4] and commercial
organizations [10, 12, 18, 22, 45].

Laplace Mechanism is a fundamental building block of DP
algorithms [20]. It answers a query𝑄 by adding noise drawn
from a Laplace distribution scaled to the ratio of the global
sensitivity of 𝑄 and the privacy loss parameter 𝜖 .

Definition 6.2 (Global Sensitivity). Given a counting
query 𝑄 : 𝐼 → R, the global sensitivity 𝐺𝑆 is defined as
the max difference of query result from any two neighboring
relational database instances D,D ′ ∈ 𝐼 :

𝐺𝑆 (𝑄) = max
(D′−D)∪(D−D′)={𝑡 }

|𝑄 (D) −𝑄 (D ′) |

Unlike the local sensitivity of a query which depends
on the given database instance, the global sensitivity of a
query finds the largest possible local sensitivity among all
possible database instances. Consider the join query in Fig-
ure 1(b), Example 2.1 shows that it has a local sensitivity of
4 on the database instance shown in Figure 1(a). However,
there exist other database instances with a much larger lo-
cal sensitivity than 4. For example, if 𝑅2 in Figure 1(a) has
1000 copies of (𝑎1, 𝑏1, 𝑑1) which results in 1000 copies of
(𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑒1, 𝑓1) in the join output, removing (𝑎1, 𝑏1, 𝑐1)
from 𝑅1 can result in a change of 1000 in the output size. If
there is no a priori bound on the number of tuples that share
the same join key, the global sensitivity of the query will be
unbounded.

Definition 6.3 (Laplace Mechanism). Given a counting
query 𝑄 : 𝐼 → R, a database instance D ∈ 𝐼 and a privacy
parameter 𝜖 , the following noisy query result satisfies 𝜖-DP:
𝑄 (D) + [, where [ ∼ 𝑒𝑥𝑝 (− |[ | ·𝜖

𝐺𝑆 (𝑄) ).

The noise [ has a mean 0 and a variance of 2𝐺𝑆 (𝑄)2/𝜖2
which increases with the global sensitivity of the query.
Hence, this mechanism cannot be directly applied to query
with unbounded global sensitivity. Prior work for general
join queries either have high performance cost [13, 17, 29]
or suffer from poor accuracy [26]. One effective and general-
purpose technique from prior work is truncation that exe-
cutes the query 𝑄 on a truncated version of the database
𝑇 (D) [30, 35]. The truncation is done in such a way that
𝑄 (𝑇 (·)) has a bounded global sensitivity. For a join, this
might mean removing rows from the database such that ev-
ery join key has a bounded selectivity. We will next show a
truncation based algorithm for answering SQL aggregation
queries with joins based on the tuple sensitivities.

6.2 Truncation mechanism with TSens
The idea behind our algorithm is to (a) identify tuples in the
database (i.e., in the primary private relation) that have a sen-
sitivity greater than a sensitivity threshold, and (b) remove all
tuples with sensitivity greater than the sensitivity threshold.

Definition 6.4 (TSens Truncation). Given a query 𝑄 ,
a database D with primary private relations PR, and a sen-
sitivity threshold 𝑖 , the truncation operator 𝑇TSens transforms
the database as:

𝑇TSens (𝑄,D, 𝑖) = {𝑡 ∈ D | 𝑡 ∈ PR ⇒ 𝛿 (𝑡,𝑄,D) ≤ 𝑖}
The global sensitivity of 𝑄 (𝑇TSens (𝑄, ·, 𝜏)) is 𝜏 . If we add

or remove a tuple with sensitivity more than 𝜏 , the query
result does not change as the new tuple will be truncated or
has already been truncated. Since the largest possible tuple
sensitivity is 𝜏 for any database, the global sensitivity is 𝜏 .
Hence, given a join query 𝑄 with high global sensitivity, we
can first apply 𝑄 (𝑇TSens (𝑄, ·, 𝜏)) to the database and then
apply Laplace mechanism with smaller noise (due to smaller
global sensitivity) on the transformed database. However, the
transformed database also introduces bias if too many tuples
are truncated. Hence, we would like to find a truncation
threshold that minimizes the expected sum of bias and noise.

Finding truncation threshold. If setting 𝜏 to be
the local sensitivity of the query 𝑄 , then 𝑄 (D) =

𝑄 (𝑇TSens (𝑄, ·, 𝜏)), i.e., no bias is introduced. However, using
local sensitivity directly violates DP. Moreover, the global
sensitivity of querying the local sensitivity of a join query is
unbounded, we cannot use Laplace mechanism to release a
noisy local sensitivity. Instead, line in PrivSQL [30], we ap-
ply the sparse vector technique (SVT) [34] to find the optimal
truncation threshold that is close to the local sensitivity.

For a query 𝑄 and a database D, let ℓ be an upper bound
on the local sensitivity. We first release a noisy version of
𝑄 (𝑇TSens (𝑄,D, 𝑙)) as �̂� using the Laplace mechanism with
global sensitivity as ℓ . Next, we run the SVT method that
checks whether 𝑞𝑖 > 0 for 𝑖 = 1, . . . , ℓ − 1, where

𝑞𝑖 =
𝑄 (𝑇TSens (𝑄,D, 𝑖)) − �̂�

𝑖

Since the global sensitivity of 𝑄 (𝑇TSens (𝑄,D, 𝑖)) is 𝑖 , the
global sensitivity of each 𝑞𝑖 is a constant 1. SVT stops the
first time (noisy) 𝑞𝑖 is above the (noisy) threshold 0 and
reports 𝑖 . We take this 𝑖 as the truncation threshold 𝜏 , and
answer the query 𝑄 using 𝑄 (𝑇TSens (𝑄,D, 𝑖)). A part of the
privacy budget 𝜖𝑡𝑠𝑒𝑛𝑠 is used to release �̂� and run SVT for
finding the truncation threshold 𝜏 . The rest 𝜖 − 𝜖𝑡𝑠𝑒𝑛𝑠 is used
to answer the query.

Theorem 6.1. The algorithm that finds the truncation
threshold satisfies 𝜖𝑡𝑠𝑒𝑛𝑠 -DP and releasing a noisy answer as
𝑄 (𝑇TSens (𝑄,D, 𝜏)) + 𝐿𝑎𝑝 ( 𝜏

𝜖−𝜖𝑡𝑠𝑒𝑛𝑠 ) satisfies (𝜖 − 𝜖𝑡𝑠𝑒𝑛𝑠 )-DP.
Together the mechanism satisfies 𝜖-DP.



Discussion. Our solution is inspired by Wilson et al. [45],
but they can only handle a single join (and not self joins),
while we can handle a wider sub-class of full conjunctive
queries without self joins. Moreover, Wilson et al. set the sen-
sitivity threshold manually, while we automatically identify
the threshold given an estimated upper bound.
Our algorithm truncates primary private tables while in

PrivSQL [30], truncation happens at non-primary private
tables. PrivSQL truncates tuples with high frequencies, but it
doesn’t mean that they joinwith the tuple of the highest tuple
sensitivity. On the contrary, truncation by tuple sensitivity
is a finer truncation strategy that reduces global sensitivity
and bias at the same time.

Our algorithm for finding the most sensitive tuples can be
easily extended for TSens by storing the multiplicity table
for the primary private table. Our truncation algorithm takes
in the estimated upper bound of tuple sensitivity ℓ . Our
algorithm will still ensure DP regardless of the value for ℓ ,
but the value of ℓ can affect the accuracy. We illustrate the
impact of ℓ on the accuracy in the evaluation.

7 EXPERIMENTS

We evaluate the efficiency and accuracy of TSens. Experi-
ments are designed to answer the following questions:
• How tight is the local sensitivity computed by TSens

compared to other algorithms like elastic sensitivity [27]?
• How does TSens’ runtime compared to that of (a) the
elastic sensitivity algorithm and (b) query evaluation?

• Does the truncation with TSens mechanism result in
more accurate differentially private query answering
than prior work like PrivSQL [30]?
We use synthetic datasets from TPC-H benchmark [1]

and real world datasets of Facebook ego-networks from
SNAP [32] and designed seven full conjunctive queries with
different query complexities to evaluate the performance of
TSens. These queries are also used to evaluate the perfor-
mance of DP mechanism supported by TSens. The results
are compared with the sensitivity engine Elastic from ‘Flex’
[27] andwith the differentially private SQL answering engine
PrivSQL from ‘PrivateSQL’ [30]. We name our sensitivity
algorithm as TSens and its DP application as TSensDP.

A summary of our key findings:
• TSens achieves at most 2,200,000 times smaller local

sensitivity compared to Elastic for a simple cyclic query
for a database with 866,602 tuples.

• TSens has on average 80% - 320% overhead compared to
query evaluation for different queries. It is 2 - 60 times
slower than Elastic, but returns a local sensitivity value
that is 6 - 60,000 times smaller on average.

• PrivSQL has more than 99% relative error (almost worse
than just returning 0 as the answer) for four of the seven

queries. TSensDP answers 8 queries with ≤ 8% relative
error and the last query with ≤ 20% relative error.

7.1 Setup

Dataset. We evaluate our algorithms on synthetic TPC-H
datasets [39] and real-world Facebook dataset [32].
TPC-H. We consider synthetic datasets generated from

TPC-H benchmark [39] with the following schema:
Attributes: RegionKey(RK), NationKey(NK), CustKey(CK),
OrderKey(OK), SuppKey(SK), PartKey(PK)
Relations: Region(R:RK), Nation(N:RK,NK), Customer(C:NK,CK),
Orders(O:CK,OK), Supplier(S:NK,SK), Part(P:PK),
Partsupp(PS:SK,PK), Lineitem(L:OK,SK,PK).
We evaluate the scalability of our algorithm on TPC-H

datasets at different scales {0.0001, 0.001, 0.01, 0.1, 1, 2, 10}.
At scale 1, the sizes of for these relations are 5, 25, 1e4,
1.5e5, 2e5, 8e5, 1.5e6, 6e6 respectively. The same schema and
datasets were used to evaluate prior work on differentially
private SQL query answering [27, 30].

Facebook. We use the Facebook ego-networks from SNAP
(Stanford Network Analysis Project) [32]. An ego-network
of a user is a set of “social cirles” formed by this user’s
friends [33]. This dataset consists of 10 ego-networks, 4233
circles, 4039 nodes and 88234 edges. We choose the ego-
network of user 348 who has 567 circles, 225 nodes and 6384
edges, create edge tables 𝐸𝑖 (𝑥,𝑦) for each circle 𝑖 such that
both users of each edge is from the circle 𝑖 and sort them
by table size in descending order. We further create tables
𝑅1 (𝑥,𝑦), 𝑅2 (𝑥,𝑦), 𝑅3 (𝑥,𝑦), 𝑅4 (𝑥,𝑦) and insert 𝐸 𝑗 into 𝑅𝑖 if
the rank of 𝐸 𝑗 mod 4 = i. We also create a 3-column table
𝑅△ (𝑥,𝑦, 𝑧) : −𝑅4 (𝑥,𝑦), 𝑅4 (𝑦, 𝑧), 𝑅4 (𝑧, 𝑥) as a triangle table.
All edges are bi-directed.

Queries. We consider 3 TPC-H queries and show their query
plan in Figure 5a which includes a path join query q1, an
acyclic join query q2, and a cyclic join query q3. The third
query q3 is a cyclic join query that builds a universal ta-
ble with an extra constraint that the supplier and customer
should be from the same nation. We also consider 4 Face-
book queries as shown in Figure 5b including a triangle

q1 R(RK)

N(RK, NK)

C(NK, CK)

O(CK,OK)

L(OK)

q2 PS(SK,PK) S(SK) P(PK) L(SK,PK)

q3 N(RK,NK) S(NK,SK) PS(SK,PK) P(PK)

R(RK) C(NK, CK) O(CK,OK) L(SK,PK, OK)

R, N, L (RK,NK,SK,PK,OK) O,C (OK,CK,NK)

S,P (SK,NK,PK) PS (SK,PK)

q3
Hyper
-tree 

(a) TPC-H queries

q ⃤
R1(A,B)

R2(B,C)
R3(C,A)

R1R2 (A,B,C)

R3 (C,A)

qw

q□

q

R1(A,B)

R2(B,C) R3(C,D)

R4(D,E)

R1(A,B)

R2(B,C) R3(C,D)

R4(D,A)

R ⃤ (A,B,C)

R1(A,B)

R2(B,C)

R3(C,A)

R1(A,B)

R2(B,C) R3(C,D)

R4(D,E)

R1R2
(A,B,C)

R3R4
(C,D,A)

R ⃤ (A,B,C)

R1(A,B)

R2(B,C)

R3(C,A)

Join Graph
Generalized 
Hypertree 
Decomposition 

(b) Facebook queries

Figure 5: The join plan for each query.
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(a) Local sensitivity reported by TSens and Elastic for

queries q1, q2 and q3 on datasets of differing scales

Relation
TSens Elastic

Most Sensitive Tuple Tuple 
Sensitivity

Elastic 
Sensitivity

Region regionkey(2) 647 120350000
Nation regionkey(4), nationkey(16) 179 24070000
Supplier suppkey(51), nationkey(3) 46 51000000
Customer nationkey(16), custkey(154) 18 11200000
Part partkey(1311) 7 2550000
Orders orderkey(57410), custkey(117) 5 350000
Partsupp partkey(1580), suppkey(81) 4 637500
Lineitem skip 1 50000

(b) Most sensitive tuples and their tuple sensitivities for each re-

lation of q3 when scale = 0.01.

Figure 6: Local sensitivity reported by TSens versus Elastic for TPC-H queries

10−4 10−3 10−2 10−1 100 101

scale

10−2

10−1

100

101

102

ti
m

e
(s

ec
)

q1 TSens

q1 query

q1 Elastic

10−4 10−3 10−2 10−1 100 101

scale

10−2

10−1

100

101

102 q2 TSens

q2 query

q2 Elastic

10−4 10−3 10−2 10−1 100 101

scale

10−2

10−1

100

101

102

103

q3 TSens

q3 query

q3 Elastic

Figure 7: The trend of time usage in terms of various scales for TPC-H queries q1, q2 and q3 and algorithms TSens
and Elastic. The base line ‘query’ shows the query evaluation time.

query 𝑞△ (𝐴, 𝐵,𝐶), a path join query 𝑞𝑤 (𝐴, 𝐵,𝐶, 𝐷, 𝐸), a 4-
cycle query 𝑞□ (𝐴, 𝐵,𝐶, 𝐷), and a star join query 𝑞� (𝐴, 𝐵,𝐶).
We also show the generalized hypertree decomposition for
all non-acyclic queries in the same figure.
We use a machine with 2 processors, 512G SSD and 16G

memory to run experiments. Each query is repeated 10 times.

7.2 Local Sensitivity

Baseline. We compare the accuracy and runtime of our
TSens algorithm with prior technique Elastic [27] for find-
ing the local sensitivity of a given query. As the original
Elastic algorithm requires the maximum frequency of the
join attributes to derive the upper bound of the local sensi-
tivity, we first let Elastic pre-process the database to obtain
the max frequency for its sensitivity analysis. We also extend
Elastic algorithm to support cross-product by assigning the
max frequency of empty attributes as the size of the table
and to take the join plan as input so that the join order in
the experiment is the same. We define the join order as a
post-traversal of the join plan.

We also compare the algorithm runtime to the query eval-
uation time. We apply Yannakakis algorithm to compute the
size of query output. For queries that are not acyclic, we first
compute the join for each node in the generalized hypertree,
and then apply Yannakakis algorithm. The time of running

Elastic is also reported. We run each algorithm 10 times to
report the average time.

Result and Analysis. Figure 6a shows the local sensitivity
trend in aspect to the scale for TPC-H. Notice that after scale
0.001, TSens has on average 7x smaller and 6x smaller of the
local sensitivity for q1 and q2 than Elastic has. Moreover,
for q3, TSens achieves 2,200,000x smaller value for the local
sensitivity than Elastic does when scale equals to 0.1. We
didn’t run q3 for scale larger than 0.1 due to the memory
limit issue. The multiplicity tables for this cyclic query grows
nearly quadratically with the input table size. Our future
workwill extend our algorithm tomaintain the top𝑘 frequent
values instead of all the frequencies which can reduce the
intermediate size and further speed up runtime (Section 5.4).

Figure 6b shows the most sensitive tuple found by TSens
for each relation for q3 at scale = 0.01. Unlike TSens, Elastic
can only obtain a local sensitivity upper bound, but cannot
find the most sensitive tuple. Hence, we report the most
sensitive tuple for each relation while also reports its elastic
sensitivity by setting this relation as the only sensitive table
for Elastic. Each tuple sensitivity found by TSens is below
1,000 while the least elastic sensitivity reported by Elastic
is beyond 10,000. We skip finding the most sensitive tuple in
LINEITEM since it has the superkey in the query head and
thus the tuple sensitivity is at most 1.



Local Sensitivity Time (seconds)

TSens Elastic TSens Elastic Evaluation
𝑞△ 87 7524 0.405 0.007 0.431
𝑞𝑤 178923 511632 0.237 0.010 0.182
𝑞□ 2014 511632 0.618 0.009 0.465
𝑞� 34 2723688 0.604 0.012 0.175

Table 1: Local sensitivity and runtime of 4 query types

for TSens and Elastic for Facebook queries. It also re-

ports the query evaluation time for counting the out-

put size. Gray cells have tighter local sensitivities.

Figure 7 shows the time cost for both TSens and Elastic
for different queries and scales for TPC-H. The second line
𝑞𝑖_𝑞𝑢𝑒𝑟𝑦 is the query evaluation time. Notice that we skip
computing the multiplicity table of Lineitem in q3 since the
tuple sensitivity is at most 1 due to FK-PK joins. For q1 and
q2, both TSens and Elastic shows a tight relation to the time
of query evaluation, which takes on average 1.8x and 0.9x of
the query evaluation time after scale 0.001. For q3, although
Elastic is much faster, TSens only takes on average 4.2x of
the query evaluation time to find on average 60,000x smaller
local sensitivity before scale 1.
We also report the accuracy and the runtime of TSens

and Elastic for Facebook queries in Table 1. The sensitiv-
ity bound improvement ranges from ×3 to ×80𝑘 . Although
TSens spends×25 to×60more time than Elastic, its runtime
is comparable to query evaluation time. The local sensitivity
can also be computed by repeating query evaluation over
databases which are formed by removing a tuple from ac-
tive domain or inserting a tuple from representative domain
one at a time (using a variation of [47] as discussed in Sec-
tions 4.1 and 5.2). However, the size of the active domain and
representative domain is above 10k. This approach will take
×10𝑘+ time than TSens.

Qu-

ery

|𝑄 (𝐷) | Algorithm Error Bias

Global

Sens.

Time

q1 60175 TSensDP 3.56% 3.44% 119 0.693
PrivateSQL 1.34% 1.02% 220 0.292

q2 60175 TSensDP 7.71% 7.62% 640 0.554
PrivateSQL 99.03% 100.00% 774 0.231

q3 2333 TSensDP 2.84% 0.00% 14 23.063
PrivateSQL 1293% 2.14% 12375k 0.546

𝑞△ 30699 TSensDP 1.50% 1.47% 49 0.562
PrivateSQL 19.12% 0.00% 6732 0.230

𝑞𝑤 17555419 TSensDP 5.59% 5.69% 17440 0.843
PrivateSQL 2.25% 0.00% 289476 10.340

𝑞□ 142903 TSensDP 2.00% 1.77% 167 0.792
PrivateSQL 100% 0.00% 289476 2.232

𝑞� 786 TSensDP 19.02% 16.16% 13 0.670
PrivateSQL 30K% 0.00% 2437K 0.290

Table 2: Application to DP: Comparison between

TSensDP and PrivSQL for TPC-H and Facebook queries.

Time is in seconds. Gray cells achieve lower errors.

7.3 Differential Privacy

Baseline. PrivSQL is a differentially private SQL answering
engine and it introduces the concept of policy that given
primary private relations, the sensitivity of other related
relations should be updated to be non-zero according to
the database key constraints. For TPC-H datasets, we con-
sider CUSTOMER is the primary private relation for q1 and q3,
and SUPPLIER is the primary private relation for q2, so the
sensitivity of ORDERS is affected by CUSTOMER and the sensi-
tivity of PARTSUPP is affected by SUPPLIER. The sensitivity
of LINEITEM is affected by either of them. For the Facebook
dataset, we consider 𝑅2 as the primary private relation.
PrivSQL uses the maximum frequency as the truncation

threshold, i.e., any tuple whose frequency is beyond the
max frequency will be dropped from the database. PrivSQL
runs SVT to learn the truncation threshold for each relation;
however, the noise scale of SVT depends on the sensitivity
of the relation while it is constantly 1 in TSensDP.
Although the privacy budget allocation strategy affects

the performance of DP algorithm, we skip exploring this
effect and assume PrivSQL and TSensDP divide the privacy
budget into two halves, one for the threshold learning and
the other for reporting the query result after truncation. We
disable the synopsis generation phase of PrivSQL and just
use Laplace mechanism to answer the SQL query directly.

Result and Analysis. Table 2 shows the statistics of releas-
ing differential private query results by TSensDP or PrivSQL
for TPC-H and Facebook datasets. Output below 0 is trun-
cated to 0. We report the median of global sensitivity, the
median of relative absolute bias, the median of relative abso-
lute error and the average time for each query over 20 runs.
We assume the table size is given. For TPC-H, we assume
the maximum tuple sensitivity of q1 is 100, of q2 is 500 and
of q3 is 10. TSensDP has ≤ 4% error for 𝑞1 and 𝑞3, and ≤ 8%
error for 𝑞2. In contrast, PrivSQL has more than 99% error
on 𝑞2 and 𝑞3. This means that the error in PrivSQL answers
for these queries is worse than returning 0 as the answer
without looking at the data. The reasons for the poor error
are different. In 𝑞2 PrivSQL truncates too much of the data,
while in 𝑞3 it estimate a very loose bound on sensitivity.

For the Facebook dataset, we assume the maximum tuple
sensitivity of 𝑞△ is 70, of 𝑞𝑤 is 25k, of 𝑞□ is 200 and of 𝑞�
is 15. TSensDP achieves < 6% error for 𝑞△, 𝑞𝑤 , 𝑞□, while
PrivSQL get > 100% error for 𝑞□ and 𝑞�. Since there is no
FK-PK join for Facebook queries, we have only one primary
private table, which means no table truncation and thus has 0
bias in PrivSQL. However, PrivSQL has ×10 to ×180𝑘 larger
global sensitivity than TSensDP, which dominates the error.

Parameter Analysis. To find how the upper bound param-
eter for tuple sensitivity ℓ affects the performance, we vary ℓ



through 1, 10, 30, 50, 100, 1000 and repeat TSensDP 20 times
for the star query 𝑞� (𝐴, 𝐵,𝐶) whose true local sensitivity is
13 when 𝑅2 is the primary private relation for DP. For each
bound, the median global sensitivity, which is also the tuple
sensitivity threshold learned from the SVT routine, is [11, 13,
9, 4, 48, 160], the median bias error is [3%, 1%, 13%, 55%, 0%,
0%], and the median relative error is [5%, 4%, 17%, 56%, 32%,
98%]. In this case, the optimal ℓ is 10 and the corresponding
error is 4%, while the worst error is 98% when ℓ = 1000.

Notice that as ℓ increases, the noise added to �̂� in the SVT
routine gets larger. This causes the learned tuple sensitivity
threshold to deviate more from the local sensitivity, which
is considered the optimal threshold by the rule of thumb.
When ℓ is too small, the learned tuple sensitivity threshold
could also be small, which increases the bias.

8 RELATEDWORK

Sensitivity analysis for SQL queries is important to the de-
sign of differentially private algorithms. The focus of ex-
isting work [8, 21, 30, 31, 35, 38] is to compute the global
sensitivities of SQL queries or their upper bounds. The ear-
liest work by McSherry along this line [35] applies static
analysis on a given relational algebra and then combines
the sensitivities of the operators in the relational algebra to
obtain the maximum possible change to the query output for
all possible database instances. This analysis is independent
of the database instance, so the result can be much larger
than the local sensitivity. In particular, for join operator, the
global sensitivity can be unbounded. The analysis either
considers a restricted form of join [21, 35] or constrained
database instances [8, 31, 38]. For general join queries on
unconstrained databases, Lipschitz extension [13, 17, 29, 30]
is usually applied to transform the original query 𝑄 that has
an unbounded sensitivity into a different query 𝑄 ′ that (a)
has abounded global sensitivity and (b) has a similar answer
as𝑄 . In particular, the transformed query in PrivateSQL [30]
require to truncates the sensitive tuples. Hence, our work
offers efficient ways to identify the most sensitive tuples to
complement PrivateSQL to achieve differential privacy.

Smooth sensitivity [26, 37] is another important sensitivity
notion for achieving differential privacy. This sensitivity is a
smooth upper bound of the local sensitivity of databases at a
distance from the given database instance. This requires the
computation of local sensitivity of an exponential number of
database instances. For SQL queries, elastic sensitivity [26]
provides an efficient static analysis rule to estimate the upper
bound of local sensitivity, but this bound can be still very
loose. For example, even if the local sensitivity for a query
with a selection operator is small, the elastic sensitivity algo-
rithm will output the same value as for a query without the
selection operators. In addition, the computation of elastic

sensitivity requires additional constraint cardinality infor-
mation of the given database instance.

Smooth sensitivity [37, 48] or Lipschitz extension [13, 17,
29] have beenmainly applied to release graph statistics. How-
ever, these algorithms either require customized analysis
for each new query [48] or suffer from high performance
cost [13, 17, 29, 37].Wewill extend our study to graph queries
(involving self-joins) in the future.

Sensitivity analysis has also been studied for non-SQL
functions [15, 24, 41], with a focus on global sensitivity. Re-
lated topics also include sensitivity analysis for probabilistic
queries [28] and finding responsibility of tuples [36], where
the goal is different from ours. Prior work on provenance
for queries and deletion propagation (e.g., [7, 14]) provide
analysis for a rich set of queries and explanations for query
results, but the analysis is mainly for removing a tuple in
the database (downward tuple sensitivity). Our work also
considers upward tuple sensitivity which involves adding
new tuples from the domain. Our future study will consider
general aggregates and functions.

9 CONCLUSIONS

We studied the local sensitivity problem for counting queries
with joins – an important task for many applications like dif-
ferentially private query answering and query explanations.
We showed that the problem is NP-hard in combined query
and data complexity even for full conjunctive queries that
have an acyclic structure – queries for which the combined
complexity of query answering is PTIME. We develop algo-
rithms for full acyclic join queries using join trees, that run
in linear in the number of relations and near linear in the
number of tuples for interesting sub-classes of acyclic queries
including path queries and “doubly acyclic queries", and in
PTIME in combined complexity when the maximum degree
in the join tree is bounded. Our algorithms can be extended
to handle related queries that include selection predicates
as well as non-acyclic queries with a certain property on
generalized hypertree decompositions. The local sensitivity
output by our algorithms is shown to be orders of magnitude
tighter than prior work. Our algorithm can also be used to
construct differentially private query answering methods
that are more accurate than the state of the art. Extending
the framework to handle general non-acyclic queries involv-
ing self-joins, projections, negations, and other aggregate
functions would be an interesting direction for future work.
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