
Properties of Inconsistency Measures for Databases
Ester Livshits

esterliv@cs.technion.ac.il
Technion

Haifa, Israel

Rina Kochirgan
rina.k@campus.technion.ac.il

Technion
Haifa, Israel

Segev Tsur
segevtsur@campus.technion.ac.il

Technion
Haifa, Israel

Ihab F. Ilyas
ilyas@uwaterloo.ca

University of Waterloo
Waterloo, ON, Canada

Benny Kimelfeld
bennyk@cs.technion.ac.il

Technion
Haifa, Israel

Sudeepa Roy
sudeepa@cs.duke.edu

Duke University
Durham, NC, USA

ABSTRACT
How should we quantify the inconsistency of a database that vi-
olates integrity constraints? Proper measures are important for
various tasks, such as progress indication and action prioritization
in cleaning systems, and reliability estimation for new datasets. To
choose an appropriate inconsistency measure, it is important to
identify the desired properties in the application and understand
which of these is guaranteed or at least expected in practice. For
example, in some use cases, the inconsistency should reduce if
constraints are eliminated; in others, it should be stable and avoid
jitters and jumps in reaction to small changes in the database. We
embark on a systematic investigation of properties for database in-
consistency measures. We investigate a collection of basic measures
that have been proposed in the past in both the Knowledge Rep-
resentation and Database communities, analyze their theoretical
properties, and empirically observe their behavior in an experi-
mental study. We also demonstrate how the framework can lead to
new inconsistency measures by introducing a new measure that, in
contrast to the rest, satisfies all of the properties we consider and
can be computed in polynomial time.

CCS CONCEPTS
• Information systems→ Data cleaning; • Theory of compu-
tation→ Incomplete, inconsistent, and uncertain databases.

KEYWORDS
Inconsistent databases, inconsistency measures, database repairs,
data cleaning, integrity constraints

ACM Reference Format:
Ester Livshits, Rina Kochirgan, Segev Tsur, Ihab F. Ilyas, Benny Kimelfeld,
and Sudeepa Roy. 2021. Properties of Inconsistency Measures for Databases.
In Proceedings of the 2021 International Conference on Management of Data
(SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3448016.3457310

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3457310

1 INTRODUCTION
Inconsistency of databases may arise in a variety of situations for
a variety of reasons. Database records may be collected from im-
precise sources (social encyclopedias/networks, sensors attached
to appliances, cameras, etc.) via imprecise procedures (natural-
language processing, signal processing, image analysis, etc.), or
be integrated from different sources with conflicting information or
formats. Common principled approaches to handling inconsistency
consider databases that violate integrity constraints, but can never-
theless be repaired by means of operations that revise the database
and resolve inconsistency [3].

Instantiations differ in the supported types of integrity con-
straints, allowed operations, and optimization goals. The constraints
may be Functional Dependencies (FDs) or themore general Equality-
Generating Dependencies (EGDs) or, more generally, Denial Con-
straints (DCs), and they may be referential (foreign-key) constraints
or the more general inclusion dependencies [2]. A repair operation
can be a deletion of a tuple, an insertion of a tuple, or an update
of an attribute value. Operations may be associated with differ-
ent costs, representing levels of trust in data items or extent of
impact [42]. Optimization goals can be minimization of the costs
incurred [33, 40] or producing the most probabable clean database
from a distribution [48] that fully (hard constraints) or partially
(soft constraints) fixes the violated integrity constraints. Various
approaches and systems have been proposed for data cleaning and,
in particular, data repairing (e.g., [16, 21, 48] to name a few).

We explore the question of how to measure database inconsistency.
This question may arise in different situations. A measure of incon-
sistency can be used for estimating the potential usefulness and
cost of incorporating databases for downstream analytics [36]. We
can also use an inconsistency measure for implementing a progress
bar for data repairing. Indeed, the importance of incorporating
progress indicators in interactive systems has been well recognized
and studied in the Human-Computer Interaction (HCI) commu-
nity [14, 28, 29, 45, 51]. Note that an inconsistency measure can
be used in any cleaning system, where the measure gives one of
several indications of progress (namely those that are associated
with integrity constraints). Beyond the indication of progress, a
measure of inconsistency can be used for prioritizing and recom-
mending actions in data repairing—address the tuples that have the
highest responsibility to the inconsistency level (e.g., Shapley value
for inconsistency [31, 39, 53]) or the ones that might result in the
greatest reduction in inconsistency.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1182

https://doi.org/10.1145/3448016.3457310
https://doi.org/10.1145/3448016.3457310

Example measures include the number of violations in the data-
base, the number of tuples involved in violations, and the number of
operations needed to reach consistency. To choose an appropriate
inconsistency measure for a specific use case, it is important to
identify the desired properties of the application and understand
which of these is guaranteed or expected in practice. For exam-
ple, to effectively communicate progress indication in repairing,
the measure should feature certain characteristics. While it should
react to changes in the database and show progress when the data-
base is “cleaner” with respect to the integrity constraints, it should
minimize jitters, jumps and sudden changes in reaction to small
changes in the database, and in turn, should well correlate with
the “expected waiting time”—an important aspect in machine-user
interaction. It should also be computationally tractable in inter-
active systems. Luo et al. [43] enunciate the importance of these
properties, referring to them as “acceptable pacing” and “minimal
overhead," respectively, in progress indicators for database queries.

In this paper, we explore desirable properties of inconsistency
measures and demonstrate the analysis and design of specific in-
consistency measures with respect to these properties. As a guid-
ing principle, we adopt the approach of rationality postulates of
inconsistency measures over knowledge bases that have been inves-
tigated in depth by the Knowledge Representation (KR) and Logic
communities [23, 26, 30–32, 34, 49]. Yet, the studied measures and
postulates fall short of capturing our desiderata for various reasons.
First, inconsistency is typically measured over a knowledge base
of logical sentences (formulas without free variables). In databases,
we reason about tuples (facts) and fixed integrity constraints, and
inconsistency typically refers to the tuples rather than the con-
straints (which are treated as exogenous information). In particular,
while a collection of sentences, and even a single sentence, might
form a contradiction, a set of tuples can be inconsistent only in
the presence of integrity constraints. Hence, as recently acknowl-
edged [5, 46], it is of importance to seek inconsistency measures
that are closer to database applications. More fundamentally, in
order to capture the repairing process and corresponding changes
to the database, the measures should be aware of the underlying
repairing operations (e.g., tuple insertion, deletion, or revision).

The following example illustrates the concept of a noisy data-
base and will be used throughout the paper to demonstrate the
differences among several inconsistency measures.

Example 1. We have an Airport database1 with the schema

Airport (Id,Type,Name,Continent,Country,Municipality)

and the FDs “Municipality→ Continent Country” and “Country→
Continent.” A clean database 𝐷0 where both FDs hold is given in Fig-
ure 1a. Figures 1b and 1c depict two noisy versions of the database that
violate one or both FDs: 𝐷1 is obtained from 𝐷0 by modifying four
values, and 𝐷2 is obtained from 𝐷0 by modifying three values. The
changed values are shown in bold. Of course, in general, we do not
know how the noisy database is generated. An inconsistency measure
aims to formally quantify the inconsistency level in a noisy database,
given a set of constraints. We will revisit this example to illustrate
different measures in Section 3 (Table 1). □

1Simplified version of https://ourairports.com/data/.

To illustrate some of the inconsistency measures, let us consider
the case where all constraints are anti-monotonic (i.e., consistency
cannot be violated by deleting tuples). For example, FDs and the
more general DCs are anti-monotonic, whereas referential key
constraints are not. One simple measure is the drastic measure Id,
which is 1 if the database is inconsistent, and 0 otherwise [49]. Of
course, this measure hardly communicates progress of cleaning, as
it does not change until the very end. Clearly, we have Id (𝐷0) = 0
whileId (𝐷1) = Id (𝐷2) = 1 for the databases of Figure 1; hence, this
measure does not differentiate the database 𝐷1 from 𝐷2, motivating
the need to study more fine-grained measures.

What about the measure IP that counts the problematic tuples
that participate in (minimal) witnesses of inconsistency [30, 31]? This
measure suffers from a disproportional reaction to repairing opera-
tions: the removal of a single tuple (e.g., a misspelling of a country
name) may cause a drastic reduction in inconsistency (for exam-
ple, if a single tuple is involved in most violations). The measure
IMI, that simply counts the constraint violations (i.e., the minimal
inconsistent subsets), suffers from the same problem. As another
example, consider the measure IMC that counts the maximal con-
sistent subsets. This measure suffers from various problems: adding
constraints can cause a reduction in inconsistency, it may fail to
reflect repairing operations (i.e., the number of maximal consistent
subsets may stay the same after applying an operation), and, again,
it may react disproportionally to small changes. Moreover, it is hard
to compute (#P-complete) already for simple FDs [38].

A recent effort in the database community proposed measures
based on the concept of a minimal repair—the minimal number of
repairing operations needed to obtain consistency [6]. We refer to
this measure as IR . We show that IR satisfies the aforementioned
rationality criteria that we formally define later on, and so, we pro-
vide a formal justification to its adoption. Yet, it is again intractable
(NP-hard) even for simple sets of FDs [33, 40]. Interestingly, we
are able to show that a linear relaxation of this measure, that we
propose in this paper as a new inconsistency measure and refer to
as IlinR , provides a combination of rationality and tractability.
Contributions. Given the numerous choices of inconsistency
measures, we ask and address the question of what properties are
desired in such a measure, so that one can make an informed choice.
In particular, we make the following contributions.

(1) Formalize and analyze desired properties of inconsis-
tency measures: We define four properties of inconsistency mea-
sures in the context of a repair system (a space of possibly weighted
repairing operations) with the following intuitive meaning:

(i) Positivity: the measure is strictly positive if and only if the
database is inconsistent,

(ii) Monotonicity: inconsistency cannot be reduced if the con-
straints get stricter,

(iii) Continuity: a single operation can have a limited relative
impact on inconsistency, and

(iv) Progression: we can always find an operation that reduces
inconsistency.

Moreover, we use these properties to analyze a collection of in-
consistency measures adapted from the KR and Logic literature
(Section 3). Specifically, we examine the inconsistency measures
against the properties, and show that most of the measures violate

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1183

https://ourairports.com/data/

Id Type Name Continent Country Municipality
𝑓1 00AA Small airport Aero B Ranch NAm US Leoti
𝑓2 7FA0 heliport Florida Keys Memorial Hospital Heliport NAm US Key West
𝑓3 7FA1 Small airport Sugar Loaf Shores Airport NAm US Key West
𝑓4 KEYW Medium airport Key West International Airport NAm US Key West
𝑓5 KNQX Medium airport Naval Air Station Key West/Boca Chica Field NAm US Key West

(a)A clean database 𝐷0.

· · · Continent Country · · ·
𝑓1 NAm US
𝑓2 Am USA
𝑓3 · · · NAm US · · ·
𝑓4 NAm USA
𝑓5 Am US

(b)A noisy database 𝐷1.

· · · Continent Country · · ·
𝑓1 NAm US
𝑓2 Am USA
𝑓3 · · · NAm US · · ·
𝑓4 NAm USA
𝑓5 NAm US

(c)A noisy database 𝐷2.

Figure 1: A clean and two noisy Airport databases from Example 1. Missing attributes in 𝐷1 and 𝐷2 are unchanged compared
to 𝐷0. Bold values are changed from the clean database. The underlines are explained in Section 3.

at least one of these properties (see Table 2). However, the measure
IR stands out satisfying all the properties (Section 4).

(2) Computational Complexity:As an additional desideratum
for practical purposes, we consider the complexity of computing
the measures. While some measures are tractable, the measure IR ,
that satisfies all the properties, is known to be intractable already
for FDs [40]. We provide a stronger result showing that computing
IR is hard already for the case of a single EGD (Section 5.1).

(3) Propose a new measure satisfying all desiderata: For
tuple deletions as repairing operations, we propose a new measure
IlinR relaxing the concept of IR . We show that IlinR satisfies all
four properties and is computable in polynomial time, even for
the general case of arbitrary sets of denial constraints; hence, it
provides a combination of rationality and tractability (Section 5).

(4) Empirical evaluation of measures: We empirically eval-
uate the behavior of these measures on multiple datasets with
different integrity constraints and inconsistency levels (Section 6).
We show that the measures that behave well in theory also exhibit
a good empirical behavior under different repair models.
Other related work. As mentioned earlier, inconsistency mea-
sures were extensively studied in the KR community [49]. Rational-
ity postulates for inconsistency measures have been studied in the
database context, for example by Parisi and Grant [46]. Contrasting
with that work, we devise properties that account for operational
aspects of repairs and repair systems, and we study the computa-
tional complexity of the measures. The properties and complexity
analysis lead us to tractable and rational measures that have not
been considered in the past (e.g., IlinR). Also contrasting with that
work, we conduct a thorough empirical evaluation over candidate
measures to explore their behavior in practice; to the best of our
knowledge, we are the first to conduct such an experimental study.

Some other relevant studies have focused on different aspects
of inconsistency measures for databases. Martinez et al. [44] intro-
duced axioms that are inherently based on a numerical interpre-
tation of the database values. Grant and Hunter [24] considered
repairing (or resolution) operators, and focused on the trade-off
between inconsistency reduction and information loss: an operation

is beneficial if it causes a high reduction in inconsistency alongside
a low loss of information. Another complementary problem is
that of associating individual facts with portions of the database
inconsistency (e.g., the Shapley value of the fact) and using these
portions to define preferences among repairs [39, 53].

In the bigger context, note that inconsistency measures quantify
the extent to which constraints are violated. Data cleaning in gen-
eral goes beyond constraint resolution to challenges such as outlier
detection, record linkage, entity resolution and so on (see, e.g., [1]
and references therein). Yet, one can use an inconsistency measure
in any cleaning system, adopting any correction mechanism what-
soever, for providing a specific view of the progress: the extent of
constraint violation (but not necessarily general dirt). Measuring
the status for other kinds of dirt is an important future challenge
that goes beyond the scope of this paper.

The remainder of the paper is organized as follows. We present
preliminary concepts and terminology in Section 2. We consider
inconsistency measures in Section 3 and their properties in Sec-
tion 4. In Section 5, we discuss complexity aspects and propose a
new rational and tractable measure. We describe an experimental
evaluation in Section 6. Finally, we make concluding remarks and
discuss directions for future work in Section 7.

2 PRELIMINARIES
We first give the basic terminology and concepts.

Relational model. A relational schema (or just schema for
short) S has a finite set of relation symbols 𝑅, each associated with
a relation signature sig(𝑅). In turn, a relation signature 𝛼 is a se-
quence (𝐴1, . . . , 𝐴𝑘) of distinct attributes 𝐴𝑖 , and 𝑘 is the arity of 𝛼 .
If sig(𝑅) has arity 𝑘 , then we say that 𝑅 is 𝑘-ary. A fact 𝑓 (over S) is
an expression of the form 𝑅(𝑐1, . . . , 𝑐𝑘), where 𝑅 is a 𝑘-ary relation
symbol of S, and 𝑐1,. . . , 𝑐𝑘 are values. If 𝑓 = 𝑅(𝑐1, . . . , 𝑐𝑘) is a fact
and sig(𝑅) = (𝐴1, . . . , 𝐴𝑘), then we refer to the value 𝑐𝑖 as 𝑓 .𝐴𝑖 .

A database 𝐷 over S is a mapping from a finite set ids(𝐷) of
record identifiers to facts over S. The set of all databases over S
is denoted by DB(S). We denote by 𝐷 [𝑖] the fact that 𝐷 maps to

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1184

the identifier 𝑖 . A database 𝐷 is a subset of a database 𝐷 ′, denoted
𝐷 ⊆ 𝐷 ′, if ids(𝐷) ⊆ ids(𝐷 ′) and 𝐷 [𝑖] = 𝐷 ′[𝑖] for all 𝑖 ∈ ids(𝐷).

An integrity constraint is a first-order sentence over S. A database
𝐷 satisfies a set Σ of integrity constraints, denoted 𝐷 |= Σ, if 𝐷
satisfies every constraint 𝜎 ∈ Σ. If Σ and Σ′ are sets of integrity
constraints, then we write Σ |= Σ′ to denote that Σ entails Σ′; that
is, every database that satisfies Σ also satisfies Σ′. We also write
Σ ≡ Σ′ to denote that Σ and Σ′ are equivalent, that is, Σ |= Σ′ and
Σ′ |= Σ. By a constraint system we refer to a class C of integrity
constraints (e.g., the class of all functional dependencies).

As a special case, a Functional Dependency (FD)𝑅 : 𝑋 → 𝑌 , where
𝑅 is a relation symbol and 𝑋,𝑌 ⊆ sig(𝑅), states that every two facts
that agree on (i.e., have equal values in) every attribute of 𝑋 should
also agree on 𝑌 . The more general Equality Generating Dependency
(EGD) has the form ∀®𝑥 [𝜑1 (®𝑥) ∧ · · · ∧ 𝜑𝑘 (®𝑥) → (𝑦1 = 𝑦2)] where
each 𝜑 𝑗 (®𝑥) is an atomic formula over the schema and 𝑦1 and 𝑦2
are variables in ®𝑥 . Finally, a Denial Constraint (DC) has the form
∀®𝑥¬ [𝜑1 (®𝑥) ∧ · · · ∧ 𝜑𝑘 (®𝑥) ∧𝜓 (®𝑥)] where each 𝜑 𝑗 (®𝑥) is an atomic
formula and𝜓 (®𝑥) is a conjunction of atomic comparisons over ®𝑥 .

Example 2. The schema of our running example consists of a
single 5-ary relation symbol Airport. All databases of Figure 1 have
five facts with ids(𝐷) = {𝑓1, · · · , 𝑓5}. The constraint set Σ consists of
two FDs as shown in Example 1.

Repair systems. Let S be a schema. A repairing operation (or
just operation) 𝑜 transforms a database 𝐷 over S into another data-
base 𝑜 (𝐷) over S, that is, 𝑜 : DB(S) → DB(S). An example is tuple
deletion, denoted ⟨−𝑖⟩(·), parameterized by a tuple identifier 𝑖 and
applicable to 𝐷 if 𝑖 ∈ ids(𝐷); the result ⟨−𝑖⟩(𝐷) is obtained from
𝐷 by deleting the tuple identifier 𝑖 (along with the corresponding
fact 𝐷 [𝑖]). Another example is tuple insertion, denoted ⟨+𝑓 ⟩(·), pa-
rameterized by a fact 𝑓 ; the result ⟨+𝑓 ⟩(𝐷) is obtained from 𝐷 by
adding 𝑓 with a new tuple identifier. (For convenience, this is the
minimal integer 𝑖 such that 𝑖 ∉ ids(𝐷).) A third example is attribute
update, denoted ⟨𝑖 .𝐴← 𝑐⟩(·), parameterized by a tuple identifier
𝑖 , an attribute 𝐴, and a value 𝑐 , and applicable to 𝐷 if 𝑖 ∈ ids(𝐷)
and 𝐴 is an attribute of the fact 𝐷 [𝑖]; the result ⟨𝑖 .𝐴← 𝑐⟩(𝐷) is
obtained from 𝐷 by setting 𝐷 [𝑖] .𝐴 to 𝑐 . By convention, if 𝑜 is not
applicable to 𝐷 , then it keeps 𝐷 intact, that is, 𝑜 (𝐷) = 𝐷 .

A repair system (over a schema S) is a collection of repairing
operations with an associated cost of applying to a given database.
For example, a smaller change of value might be less costly than a
greater one [20], and some facts might be more costly than others
to delete [40, 42] or update [7, 33, 40]; changing a person’s zip code
might be less costly than changing the person’s country, which, in
turn, might be less costly than deleting the entire person’s record.
Formally, a repair system R is a pair (𝑂,𝜅) where 𝑂 is a set of
operations and 𝜅 : 𝑂 × DB(S) → [0,∞) is a cost function that
assigns the cost𝜅 (𝑜, 𝐷) to applying𝑜 to𝐷 .We require that𝜅 (𝑜, 𝐷) =
0 if and only if 𝐷 = 𝑜 (𝐷); that is, the cost is nonzero when, and
only when, an actual change occurs.

For a repair system R, we denote by R★ = (𝑂★, 𝜅★) the repair
system of all sequences of operations from R, where the cost of a
sequence is the sum of costs of the individual operations thereof.
Let C be a constraint system and R a repair system. We say that C
is realizable by R if it is always possible to make a database satisfy
the constraints of C by repeatedly applying operations from R.

Formally, C is realizable by R if for every database𝐷 and a finite set
Σ ⊆ C there is a sequence 𝑜 in R★ such that 𝑜 (𝐷) |= Σ. An example
of C is the system CFD of all FDs 𝑅 : 𝑋 → 𝑌 . An example of R is the
subset system, denoted R⊆ , where𝑂 is the set of all tuple deletions
(hence, the result is always a subset of the original database), and 𝜅
is determined by a special cost attribute, 𝜅 (⟨−𝑖⟩(𝐷)) = 𝐷 [𝑖] .cost,
if a cost attribute exists, and otherwise, 𝜅 (⟨−𝑖⟩(𝐷)) = 1 (every tuple
has unit cost for deletion). Observe that R⊆ realizes C, since the
latter consists of anti-monotonic constraints.

Example 3. The database 𝐷1 of Figure 1b may be obtained from
𝐷0 by applying the following sequence of attribute updates (here, we
assume that the identifier of a fact 𝑓𝑖 is 𝑖):

𝐸1 = ⟨2.Continent← Am⟩ (𝐷0) 𝐸2 = ⟨2.Country← USA⟩ (𝐸1)
𝐸3 = ⟨4.Country← USA⟩ (𝐸2) 𝐷1 = ⟨5.Continent← Am⟩ (𝐸3)

If we consider tuple deletions and insertions, we may obtain 𝐷1 from
𝐷0 by applying the following sequence of operations:

𝐸1 = ⟨−2⟩ (𝐷0) 𝐸2 = ⟨+𝑓2 ⟩ (𝐸1) 𝐸3 = ⟨−4⟩ (𝐸2)
𝐸4 = ⟨+𝑓4 ⟩ (𝐸3) 𝐸5 = ⟨−5⟩ (𝐸4) 𝐷1 = ⟨+𝑓5 ⟩ (𝐸5)

where 𝑓2, 𝑓4 and 𝑓5 are the facts of 𝐷1. We may also assign a cost
to each operation. For example, if both tuple deletions and attribute
updates are allowed, we may associate a higher cost with the oper-
ation ⟨−4⟩(𝐷) that deletes an entire fact compared to the operation
⟨4.Country← USA⟩(𝐷) that updates a single attribute value.

3 INCONSISTENCY MEASURES
Let S be a schema and C a constraint system. An inconsistency
measure is a function I that maps a finite set Σ ⊆ C of integrity
constraints and a database 𝐷 to a number I(Σ, 𝐷) ∈ [0,∞). Intu-
itively, a high I(Σ, 𝐷) implies that 𝐷 is far from satisfying Σ. We
make two standard requirements:
• I is zero on consistent databases; that is, I(Σ, 𝐷) = 0 when-
ever 𝐷 |= Σ;
• I is invariant under logical equivalence of constraints; that
is, I(Σ, 𝐷) = I(Σ′, 𝐷) whenever Σ ≡ Σ′.

Next, we discuss several examples of inconsistency measures.
Some of these measures (namely, Id, IMI, IP and IMC) are adapted
from the survey of Thimm [49] to the context of relational databases.

The simplest measure is the drastic inconsistency value, denoted
Id, which is the indicator function of inconsistency.

Id (Σ, 𝐷) :=
{
0 if 𝐷 |= Σ;
1 otherwise.

In Figure 1, we have that 𝐷0 |= Σ, while 𝐷1, 𝐷2 ̸ |= Σ. Therefore,
Id (Σ, 𝐷0) = 0 and Id (Σ, 𝐷1) = Id (Σ, 𝐷2) = 1

The following measures, IMI, IP and IMC, apply to systems C
of anti-monotonic constraints. Recall that an integrity constraint
𝜎 is anti-monotonic if for all databases 𝐷 and 𝐷 ′, if 𝐷 ⊆ 𝐷 ′ and
𝐷 ′ |= 𝜎 , then 𝐷 |= 𝜎 . Examples of anti-monotonic constraints are
the DCs [19], the classic FDs, conditional FDs [9], and EGDs [4].

For a set Σ ⊆ C of anti-monotonic constraints and a database
𝐷 , denote by MIΣ (𝐷) the set of all minimal inconsistent subsets of
𝐷 ; that is, the set of all 𝐸 ⊆ 𝐷 such that 𝐸 ̸ |= Σ and 𝐸 ′ |= Σ for all
proper subsets 𝐸 ′ ⊊ 𝐸. Since the constraints are anti-monotonic,
it holds that 𝐷 |= Σ if and only ifMIΣ (𝐷) is empty. Drawing from

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1185

Table 1: The inconsistency measure values on the databases of our running example.

Noisy database 𝐷1 Noisy database 𝐷2
Measure value explanation value explanation

Id 1 inconsistent database 1 inconsistent database
IR (deletions) 3 e.g., remove {𝑓2, 𝑓4, 𝑓5 } or {𝑓3, 𝑓4, 𝑓5 } 2 e.g., remove {𝑓2, 𝑓3 } or {𝑓2, 𝑓4 }
IR (updates) 4 change the values shown in bold or with an underline 3 change the values shown in bold
IMI 7 | { {𝑓2, 𝑓3 }, {𝑓2, 𝑓4 }, {𝑓2, 𝑓5 }, {𝑓3, 𝑓4 }, {𝑓3, 𝑓5 }, {𝑓4, 𝑓5 }, {𝑓1, 𝑓5 }} | 5 | {𝑓2, 𝑓3 }, {𝑓2, 𝑓4 }, {𝑓2, 𝑓5 }, {𝑓3, 𝑓4 }, {𝑓4, 𝑓5 }} |
IP 5 all tuples are involved in violations 4 all tuples except 𝑓1 are involved in violations
IMC 3 | { {𝑓1, 𝑓2 }, {𝑓1, 𝑓3 }, {𝑓1, 𝑓4 }, {𝑓5 }} | − 1 2 | { {𝑓1, 𝑓2 }, {𝑓1, 𝑓4 }, {𝑓1, 𝑓3, 𝑓5 }} | − 1
IlinR 2.5 e.g., assign 0.5 to all 𝑓1, · · · , 𝑓5 (see Section 5.2) 2 e.g., assign 0.5 to all 𝑓2, · · · , 𝑓5 (see Section 5.2)

known inconsistency measures [30, 31, 49], the measure IMI, also
known as MI Shapley Inconsistency, is the cardinality of this set.

IMI (Σ, 𝐷) := |MIΣ (𝐷) |
A fact 𝑓 that belongs to a minimal inconsistent subset is called

problematic, and the measure IP counts the problematic facts [24].

IP (Σ, 𝐷) := | ∪MIΣ (𝐷) |
Example 4. The set Σ of constraints of Example 1 consists of FDs,

which are violated by pairs of facts; thus, the size of any minimal in-
consistent subset w.r.t. Σ is two. Since the database𝐷0 of Figure 1 satis-
fies Σ, we have that IMI (Σ, 𝐷0) = IP (Σ, 𝐷0) = 0. In 𝐷1, all (six) pairs
of facts from {𝑓2, 𝑓3, 𝑓4, 𝑓5} as well as the pair {𝑓1, 𝑓5} jointly violate
Σ; hence, there are seven violating pairs in total and IMI (Σ, 𝐷1) = 7.
As every fact of 𝐷1 occurs in at least one violating pair, we have that
IP (Σ, 𝐷1) = 5. Similarly, IMI (Σ, 𝐷2) = 5 as shown in Table 1, and
IP (Σ, 𝐷2) = 4 as all facts of 𝐷2 except 𝑓1 are involved in violations.

For a set Σ ⊆ C of anti-monotonic constraints and a database
𝐷 , we denote by MCΣ (𝐷) the set of all maximal consistent subsets
of 𝐷 ; that is, all 𝐸 ⊆ 𝐷 such that 𝐸 |= Σ and, moreover, 𝐸 ′ ̸ |= Σ
whenever 𝐸 ⊊ 𝐸 ′ ⊆ 𝐷 . Observe that if 𝐷 |= Σ, then MCΣ (𝐷) is
simply the singleton {𝐷}, and for anti-monotonic constraints, the
setMCΣ (𝐷) is never empty (since, e.g., the empty set is consistent).
The measure IMC is the cardinality of MCΣ (𝐷), minus one.

IMC (Σ, 𝐷) := |MCΣ (𝐷) | − 1
We note that the definition of IMC in the KR setting is slightly

different than ours, as it takes into account the number of self-
contradictions in the knowledge base [24, 26]. This highlights an
important difference between the standard KR setting and ours. As
aforementioned, we distinguish between tuples and integrity con-
straints, andwemeasure only tuple sets; thus, no self-contradictions
exist per se—an individual tuple is always consistent. However, a
tuple can be self-inconsistent in the presence of a relevant con-
straint (e.g., the DC “height > 0”). Parisi and Grant [46] refer to
such tuples as contradictory tuples. Hence, we also consider here
the following variant of IMC that counts self-inconsistencies.

I ′MC (Σ, 𝐷) := |MCΣ (𝐷) | + |SelfInconsistencies(𝐷) | − 1

Example 5. In Figure 1, it holds that IMC (Σ, 𝐷0) = 0 as 𝐷0 is
consistent and MCΣ (𝐷0) = {𝐷0}. The IMC values for 𝐷1 and 𝐷2
are shown in Table 1 along with the maximal consistent subsets.
For instance, for 𝐷1, the set {𝑓1, 𝑓2} is a maximal consistent sub-
set as adding 𝑓3 introduces a violation of the FD Municipality →

Continent Country, and the addition of 𝑓4 or 𝑓5 introduces viola-
tions of both FD. As we consider FDs, for which there are no self-
inconsistencies, for 𝐷0, 𝐷1, 𝐷2, the I ′MC and IMC values coincide.

All the inconsistency measures considered so far are adapted
from the KR literature, and only take the database and set of in-
tegrity constraints into account. However, in the context of databases,
it is also important to consider the repair system that aims to fix an
inconsistent database via repairing operations (e.g., value updates
or tuple deletions). The next measure assumes an underlying repair
system R and constraint system C such that C is realizable by R.

The measure IR is the minimal cost of a sequence of opera-
tions that repairs the database. It captures the intuition around
various notions of repairs known as cardinality repairs and optimal
repairs [2, 33, 40].

IR (Σ, 𝐷) := min{𝜅★(𝑜, 𝐷) | 𝑜 ∈ 𝑂★ and 𝑜 (𝐷) |= Σ}
This measure is the same as the d-hit inconsistency measure intro-
duced by Grant and Hunter [25]. Moreover, IR is the distance from
satisfaction used in property testing [22] in the special case where
the repair system consists of unit-cost insertions and deletions.

While many of the rule-based approaches to error detection and
repairing in the database literature have considered anti-monotonic
constraints like DCs, EGDs, and FDs [3, 12, 13, 17, 48, 52], the mea-
sure IR in general can be used with other types of constraints (like
referential integrity constraints or other complex global constraints
that are not anti-monotonic). This measure could also naturally
incorporate weighted (soft) rules [10].

Example 6. The values ofIR on the two noisy databases of Figure 1
are given in Table 1 for the cases where the repairing operations are
tuple deletions or attribute updates. As mentioned in Example 4, all
pairs of facts from {𝑓2, 𝑓3, 𝑓4, 𝑓5} in 𝐷1 jointly violate Σ; thus, only
one of these facts may appear in a repair, and the minimal number of
facts that we need to remove from the database to satisfy Σ is three
(e.g., remove {𝑓2, 𝑓4, 𝑓5}). Assuming unit-cost deletions, we have that
IR (Σ, 𝐷1) = 3 for the repair system R⊆ . If we consider attribute
updates, we need to update at least every bold (or underlined) value
in 𝐷1 to satisfy the FDMunicipality→ Continent Country; hence,
in this case, IR (Σ, 𝐷1) = 4 (again, for the case of unit-cost updates).

4 PROPERTIES OF MEASURES
We now propose and discuss several properties (postulates) of data-
base inconsistency measures. We illustrate these properties over the
measures of the previous section. In our examples throughout the
section, we focus on the case where the constraints are FDs or the

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1186

Table 2: Satisfaction of properties for CFD/CDC and R⊆ (e.g.,
IMI satisfies monotonicity for FDs but not DCs). Tractability
(“PTime” assuming P ≠ NP) is discussed in Section 5, where
we also define the measure IlinR in the last row.

Pos. Mono. B. Cont. Prog. PTime
Id ✓/✓ ✓/✓ ✗/✗ ✗/✗ ✓/✓
IMI ✓/✓ ✓/✗ ✗/✗ ✓/✓ ✓/✓
IP ✓/✓ ✓/✗ ✗/✗ ✓/✓ ✓/✓
IMC ✓/✗ ✗/✗ ✓/✓ ✗/✗ ✗/✗
I′MC ✓/✓ ✗/✗ ✗/✗ ✗/✗ ✗/✗
IR ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✗/✗
IlinR ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓

more general DCs, and the repair system is the subset system R⊆
where only tuple deletions are allowed. We stress, however, that
these inconsistency measures can be used under any repair system
and constraint system (perhaps without the theoretical guarantees),
and we illustrate that in our experimental study (Section 6).

Positivity. A basic property is positivity, sometimes referred
to as consistency [26, 46]. This property is also the first axiom
suggested by Martinez et al. [44].

Positivity: I(Σ, 𝐷) > 0 whenever 𝐷 ̸ |= Σ.
Each of Id, IMI, IP, I ′MC, and IR satisfies positivity (for any set
of anti-monotonic constraints), but not IMC. For example, let 𝐷
be a database with of two facts, 𝑅(𝑎) and 𝑅(𝑏), and Σ consists
of the (denial) constraint ¬𝑅(𝑎) (i.e., 𝑅(𝑎) is not in the database).
Then IMC (Σ, 𝐷) = 0 since MCΣ (𝐷) = {𝑅(𝑏)}. Observe that 𝑅(𝑎)
is inconsistent by itself; hence, the example does not apply to I ′MC
and I ′MC (Σ, 𝐷) = 1. Yet, in the case of FDs, every violation involves
two facts, and so |MCΣ (𝐷) | ≥ 2 and positivity holds.

Monotonicity.The next property ismonotonicity—inconsistency
cannot decrease if the constraints get stricter.

Monotonicity: I(Σ, 𝐷) ≤ 𝐼 (Σ′, 𝐷) whenever Σ′ |= Σ.
For example, Id and IR satisfy monotonicity for all anti-monotonic
constraints, since a repair w.r.t. Σ′ is also a repair w.r.t. Σ. The
measures IMI and IP satisfy monotonicity for FDs, since in this
case |MIΣ (𝐷) | is the number of fact pairs that jointly violate an FD,
which can only increase when adding or strengthening FDs. Yet,
they may violate monotonicity for the more general class of DCs.

Proposition 1. In the case of IMI and IP, monotonicity can be
violated already for the class of DCs.

Proof. We begin with IMI. Consider a schema with a single
relation symbol, and for a natural number 𝑘 > 0, let Σ𝑘 consist of a
single DC stating that there are at most 𝑘 − 1 facts in the database.
(The reader can easily verify that, indeed, Σ𝑘 can be expressed as
a DC.) Then, IMI (Σ𝑘 , 𝐷) =

(𝑛
𝑘

)
whenever 𝐷 has 𝑛 ≥ 𝑘 facts. In

particular, whenever 𝑘 ′ > 𝑘 and 𝐷 has 𝑛 ≥ 2𝑘 ′ facts, it holds that
IMI (Σ𝑘′, 𝐷) > IMI (Σ𝑘 , 𝐷) while Σ𝑘 |= Σ𝑘′ .

We now consider the measureIP. Let S be a schema that contains
two relation symbols 𝑅(𝐴, 𝐵) and 𝑆 (𝐴, 𝐵). Consider the following
two EGDs (which are, of course, special cases of DCs):

𝜎1 = ∀𝑥, 𝑦, 𝑧, 𝑤 [
(
𝑅 (𝑥, 𝑦), 𝑆 (𝑥, 𝑧), 𝑆 (𝑥, 𝑤)

)
⇒ 𝑧 = 𝑤]

𝜎2 = ∀𝑥, 𝑧, 𝑤 [
(
𝑆 (𝑥, 𝑧), 𝑆 (𝑥, 𝑤)

)
⇒ 𝑧 = 𝑤]

Let Σ1 = {𝜎1} and Σ2 = {𝜎1, 𝜎2}. Every set in MIΣ1 (𝐷) is of
size three, while the size of the sets in MIΣ2 (𝐷) is two. Hence,
in a database where |MIΣ1 (𝐷) | = |MIΣ2 (𝐷) | (i.e., where 𝜎1 is vi-
olated by {𝑅(a, b), 𝑆 (a, c), 𝑆 (a, d)} if and only if 𝜎2 is violated by
{𝑆 (a, c), 𝑆 (a, d)}), we have |𝑃Σ1 (𝐷) | > |𝑃Σ2 (𝐷) |while Σ2 |= Σ1. □

The measures IMC and I ′MC, on the other hand, can violate
monotonicity even for FDs (hence, also for DCs).

Proposition 2. In the case of IMC and I ′MC, monotonicity can
be violated already for the class of FDs.

Proof. Let 𝐷 consist of these facts over 𝑅(𝐴, 𝐵,𝐶, 𝐷):
𝑓1 = 𝑅 (0, 0, 0, 0) 𝑓2 = 𝑅 (1, 0, 0, 0) 𝑓3 = 𝑅 (1, 1, 0, 1) 𝑓4 = 𝑅 (0, 1, 0, 1)

Let Σ1 = {𝐴→ 𝐵}, Σ2 = {𝐴→ 𝐵,𝐶 → 𝐷}. Then Σ2 |= Σ1 and:
MC(Σ1, 𝐷) = {{𝑓1, 𝑓2 }, {𝑓1, 𝑓3 }, {𝑓2, 𝑓4 }, {𝑓3, 𝑓4 }}
MC(Σ2, 𝐷) = {{𝑓1, 𝑓2 }, {𝑓3, 𝑓4 }}

We conclude thatIMC (Σ1, 𝐷) = I ′MC (Σ1, 𝐷) = 3 andIMC (Σ2, 𝐷) =
I ′MC (Σ2, 𝐷) = 1, proving that monotonicity is violated. □

Note that our monotonicity definition is different from that of
Parisi and Grant [46], as monotonicity in our case is restricted
to the integrity constraints rather than the database. Here, we do
not consider a property for monotonicity over the database (i.e., if
𝐷 ⊆ 𝐷 ′ then I(𝐷) ≤ I(𝐷 ′)), as adding a new tuple may, in fact,
reduce inconsistency, for example, under foreign-key constraints.

Positivity and monotonicity serve as sanity conditions that the
measure indeed quantifies inconsistency—it does not ignore incon-
sistency, and it does not reward strictness of constraints. Next, we
propose two properties that are aware of the underlying repair sys-
tem R = (𝑂,𝜅) as a model of operations. They are inspired by what
Luo et al. [43] state informally as “acceptable pacing” and “continu-
ously revised estimates.” The first, continuity, limits the ability of
an operation to have a drastic effect, and the second, progression,
states that the measure is reactive and not indifferent to operations.

BoundedContinuity. Continuitymeans that, intuitively speak-
ing, repairing operations cannot cause disproportional changes to
the database. More formally, it is parameterized by a number 𝛿 ≥ 1
and it states that, for every two databases 𝐷1 and 𝐷2, and for each
operation 𝑜1 on 𝐷1 we can find an operation 𝑜2 on 𝐷2 that is (al-
most) at least as impactful as 𝑜1, as it reduces inconsistency by
at least 1/𝛿 of what 𝑜1 does in 𝐷1. This property is important in
reliability estimation, for instance, where one wishes to avoid a
situation where the database is deemed highly inconsistent and,
yet, a small change can make it considerably more consistent. It is
also important in progress indication, where it limits unexpected
jumps and changes. In what follows, we denote by ΔI,Σ (𝑜1, 𝐷1)
the value I(Σ, 𝐷1) − I(Σ, 𝑜1 (𝐷1)).
𝛿-continuity: For all Σ, 𝐷1, 𝐷2 and 𝑜1 ∈ 𝑂 , there exists 𝑜2 ∈ 𝑂

such that ΔI,Σ (𝑜2, 𝐷2) ≥ ΔI,Σ (𝑜1, 𝐷1)/𝛿 .
This definition can be extended to the case where the measure is

aware of the cost of operations in the repair system R. There, the
change is relative to the cost of the operation. That is, we define
the weighted version of 𝛿-continuity in the following way.
Weighted 𝛿-continuity: For all Σ, 𝐷1, 𝐷2 and 𝑜1 ∈ 𝑂 , there exists

𝑜2 ∈ 𝑂 such that ΔI,Σ (𝑜2,𝐷2)
𝜅 (𝑜2,𝐷2) ≥

ΔI,Σ (𝑜1,𝐷1)
𝛿 ·𝜅 (𝑜1,𝐷1) .

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1187

We say that a measure I has bounded continuity, if there exists
𝛿 > 0 such that I satisfies 𝛿-continuity. It is an easy observation
that IR satisfies bounded continuity, and even bounded weighted
continuity, for any set of anti-monotonic constraints. We will later
prove that none of the other measures discussed so far satisfies
(unweighted) bounded continuity.

Progression. The last property we discuss is progression that
states that, within the underlying repair system R = (𝑂,𝜅), there
is always a way to progress towards consistency, as we can find
an operation 𝑜 of R such that inconsistency reduces after applying
𝑜 . This property is particularly important for the task of progress
indication in data repairing systems, as the combination of bounded
continuity and progressions means that it is always possible to
progress without significant slowdowns and long pauses, a behavior
that users strongly averse towards [28].

Progression: whenever 𝐷 ̸ |= Σ, there is 𝑜 ∈ 𝑂 such that
I(Σ, 𝑜 (𝐷)) < 𝐼 (Σ, 𝐷).

Clearly, the measure Id violates progression. The measure IR sat-
isfies progression for any set of anti-monotonic constraints, since
we can always remove a fact from the minimum repair. The mea-
sure IMI satisfies progression, since we can always remove a fact 𝑓
that participates in one of the minimal inconsistent subsets and, by
doing so, eliminate all the subsets that include 𝑓 . When we remove
a fact 𝑓 that appears in a minimal inconsistent subset, the measure
IP decreases as well; hence, it satisfies progression. On the other
hand, IMC and I ′MC may violate progression even for functional
dependencies, as illustrated in the following example.

Example 7. Consider again the database𝐷 and the set Σ2 from the
proof of Proposition 2. As explained there,IMC (Σ2, 𝐷) = I ′MC (Σ2, 𝐷) =
1. The reader can easily verify that for every tuple deletion 𝑜 , it is still
the case that IMC (Σ2, 𝑜 (𝐷)) = I ′MC (Σ2, 𝑜 (𝐷)) = 1.

Note that there are some dependencies among the properties, as
shown in the following easy proposition (proof is in [41]).

Proposition 3. Suppose that the class C is realizable by the repair
system R, and let I be an inconsistency measure.
• If I satisfies progression, then I satisfies positivity.
• If I satisfies positivity and bounded continuity, then I satisfies
progression.

Using Proposition 3, we can now prove the following.

Proposition 4. In the case ofId,IMI,IP,IMC, andI ′MC, bounded
(unweighted) continuity can be violated already for the class CFD of
FDs and the system R⊆ of subset repairs.

Proof. Let Σ = {𝐴→ 𝐵} and let 𝐷 be a database that contains
the following facts over 𝑅(𝐴, 𝐵,𝐶):

𝑓0 = 𝑅(0, 0, 0) 𝑓𝑖 = 𝑅(0, 1, 𝑖) 𝑓 𝑘𝑗 = 𝑅(𝑗, 𝑘, 0)

where 𝑖, 𝑗 ∈ {1, 𝑛} for some 𝑛 and 𝑘 ∈ {1, 2}. The fact 𝑓0 violates
the FD with every fact 𝑓𝑖 , and for each 𝑗 , the facts 𝑓 1

𝑗
and 𝑓 2

𝑗
jointly

violate the FD. All the facts in the database participate in a violation
of the FD; hence, IP (Σ, 𝐷) = 3𝑛 + 1. In addition, IMI (Σ, 𝐷) = 2𝑛.

Let the operation 𝑜1 be the deletion of 𝑓0. Applying 𝑜1, we signifi-
cantly reduce inconsistency w.r.t. these two measures, since none of
the facts 𝑓𝑖 now participates in a violation; thus, IP (Σ, 𝑜1 (𝐷)) = 2𝑛

and IMI (Σ, 𝑜1 (𝐷)) = 𝑛. However, every possible operation 𝑜2
on the database 𝑜1 (𝐷) only slightly reduces inconsistency (by
two in the case of IP and by one in the case of IMI). Therefore,
ΔIMI,Σ (𝑜1, 𝐷) = 𝑛 and ΔIMI,Σ (𝑜2, 𝑜1 (𝐷)) = 1, and the ratio be-
tween these two values depends on |𝐷 |. Similarly, it holds that
ΔIP,Σ (𝑜1, 𝐷) = 𝑛 + 1 and ΔIP,Σ (𝑜2, 𝑜1 (𝐷)) = 2, and again the ratio
between these two values depends on |𝐷 |.

As for Id, IMC, and I ′MC, we use Proposition 3. In the case of FDs,
each of the three measures satisfies positivity but not progression
(Example 7), and hence, they violate bounded continuity. □

Table 2 summarizes the satisfaction of the properties held by the
different inconsistency measures we discussed here, for the case of a
system C of FDs or DCs and the repair system R⊆ . The last column
refers to computational complexity, discussed in Section 5.1, and the
last row refers to another measure, IlinR , introduced in Section 5.2.

5 RATIONAL AND TRACTABLE MEASURES
In Section 4, we defined several properties of inconsistency mea-
sures, and we have shown that each of the measures we consider
satisfies some and violates others, with the exception of IR that
satisfies all. Unfortunately, as we explain in Section 5.1, this mea-
sure is often intractable. This, in turn, raises the question whether
there is any tractable inconsistency measure that satisfies all of
the properties. We answer this question affirmatively, for the case
where repairing operations are tuple deletions, by presenting a new
measure in Section 5.2. In Section 5.3, we discuss the challenges in
designing such a measure for more general repair systems, particu-
larly for the case where repairing operations are attribute updates.

5.1 Computational Complexity
We now discuss the complexity of measuring inconsistency accord-
ing to the aforementioned measures. We focus on the class of DCs
and the special case of FDs. Moreover, we focus on data complexity,
which means that the set Σ of constraints is fixed, and only the
database 𝐷 is given as input for the computation of I(Σ, 𝐷).

The measure Id boils down to testing consistency, which is
doable in polynomial time (under data complexity). The measures
IMI and IP can be computed by enumerating all the subsets of 𝐷
of a bounded size, where this size is determined by Σ. Hence, IMI
and IP can also be computed in polynomial time.

The measures IMC and I ′MC can be intractable to compute al-
ready for FDs. When Σ is a set of FDs, IMC (Σ, 𝐷) is the number of
maximal independent sets (minus one) of the conflict graphwherein
the tuples of 𝐷 are the nodes, and there is an edge between every
two tuples that violate an FD. Countingmaximal independent sets is
generally #P-complete, with several tractable classes of graphs such
as the 𝑃4-free graphs that do not have any induced subgraph that
is a path of length four. Under conventional complexity assump-
tions, the finite sets Σ of FDs for which IMC (Σ, 𝐷) is computable in
polynomial time are precisely the sets Σ of FDs that entail a 𝑃4-free
conflict graph for every database 𝐷 [38]. Note that I ′MC and IMC
are equivalent for FDs; hence, the same applies to I ′MC.

ThemeasureIR is also intractable even for FDs. ForC = CFD and
R = R⊆ , this measure is the size of the minimum vertex cover of the
conflict graph. Again, this is an NP-hard computational problem on
general graphs. In a recent work, it has been shown that there is an

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1188

Minimize :
∑

𝑖∈ids (𝐷)
𝑥𝑖 · 𝜅 (⟨−𝑖 ⟩ (·), 𝐷) subj. to:

∀𝐸 ∈ MIΣ (𝐷) :
∑

𝑖∈ids (𝐸)
𝑥𝑖 ≥ 1 (1)

∀𝑖 ∈ ids (𝐷) : 𝑥𝑖 ∈ {0, 1} (2)

Figure 2: ILP for IR (Σ, 𝐷) under CDC and R⊆ .

efficient procedure that takes as input an FD set Σ and determines
one of two outcomes: (a) IR (Σ, 𝐷) can be computed in polynomial
time, or (b) IR (Σ, 𝐷) is NP-hard to compute (and even approximate
beyond some constant) [40]. There, they have also studied the case
where the repair system allows only attribute updates. In both repair
systems it is the case that, if Σ consists of a single FD per relation
(which is a commonly studied case, e.g., key constraints [18, 35])
then IR (Σ, 𝐷) can be computed in polynomial time. Unfortunately,
this is no longer true (under conventional complexity assumptions)
if we go beyond FDs to simple EGDs.

Example 8. Consider the following four EGDs.
𝜎1 : ∀𝑥, 𝑦, 𝑧 [𝑅 (𝑥, 𝑦), 𝑅 (𝑥, 𝑧) ⇒ (𝑦 = 𝑧)]
𝜎2 : ∀𝑥, 𝑦, 𝑧 [𝑅 (𝑥, 𝑦), 𝑅 (𝑦, 𝑧) ⇒ (𝑥 = 𝑧)]
𝜎3 : ∀𝑥, 𝑦, 𝑧 [𝑅 (𝑥, 𝑦), 𝑅 (𝑦, 𝑧) ⇒ (𝑥 = 𝑦)]
𝜎4 : ∀𝑥, 𝑦, 𝑧 [𝑅 (𝑥, 𝑦), 𝑆 (𝑦, 𝑧) ⇒ (𝑥 = 𝑧)]

Observe that 𝜎1 is an FD whereas 𝜎2, 𝜎3 and 𝜎4 are not. The constraint
𝜎2 states that there are no paths of length two except for two-node
cycles, and 𝜎3 states that there are no paths of length two except for
single-node cycles. Computing IR (Σ, 𝐷) w.r.t. Σ = {𝜎1} or Σ = {𝜎4}
can be done in polynomial time; however, the problem becomes NP-
hard for Σ = {𝜎2} and Σ = {𝜎3}. □

The next theorem fully classifies the complexity of computing
IR (Σ, 𝐷) for Σ that consists of a single EGD with two binary atoms.

Theorem 1. Let R = R⊆ , and let Σ be a set that consists of a
single EGD 𝜎 with two binary atoms. If 𝜎 is of the following form:

∀𝑥1, 𝑥2, 𝑥3 [𝑅(𝑥1, 𝑥2), 𝑅(𝑥2, 𝑥3) ⇒ (𝑥𝑖 = 𝑥 𝑗)]
then computing IR (Σ, 𝐷) is NP-hard. In any other case, IR (Σ, 𝐷)
can be computed in polynomial time.

The proof of the theorem is given in the extended version [41].
Note that the EGDs 𝜎2 and 𝜎3 from Example 8 satisfy the condition
of Theorem 1; hence, computing IR (Σ, 𝐷) w.r.t. these EGDs is in-
deed NP-hard. The EGDs 𝜎1 and 𝜎4 do not satisfy the condition of
the theorem; thus, computing IR (Σ, 𝐷) w.r.t. these EGDs can be
done in polynomial time.

5.2 The Subset Repair System
The discussion in the previous section shows that among the mea-
sures considered so far, the rational ones are intractable. We now
propose a new measure that is both rational and tractable in the
case where C is the class CDC of DCs and R = R⊆ (i.e., operations
are tuple deletions). Recall that a DC has the form∀®𝑥¬[𝜑 (®𝑥)∧𝜓 (®𝑥)]
where 𝜑 (®𝑥) is a conjunction of atomic formulas, and𝜓 (®𝑥) is a con-
junction of comparisons over ®𝑥 . Recall that DCs generalize common
classes of constraints such as FDs, conditional FDs, and EGDs.

Let 𝐷 be a database and Σ a finite set of DCs. For R = (𝑂,𝜅), the
measure IR (Σ, 𝐷) is the result of the Integer Linear Program (ILP)
of Figure 2 wherein each 𝑥𝑖 , for 𝑖 ∈ ids(𝐷), determines whether to
delete the 𝑖th tuple (𝑥𝑖 = 1) or not (𝑥𝑖 = 0). Denote by IlinR (Σ, 𝐷)
the solution of the linear relaxation of this ILP, which is the Linear
Program (LP) obtained from the ILP by replacing the last constraint
(i.e., Equation (2)) with “∀𝑖 ∈ ids(𝐷) : 0 ≤ 𝑥𝑖 ≤ 1.”

It is easy to see that the relative rankings of the inconsistency
measure values of two databases under IlinR and IR are consistent
with each other if they have sufficient separation under the first one.
More formally, for two databases𝐷1, 𝐷2 we have that IlinR (Σ, 𝐷1) ≥
𝜇 · IlinR (Σ, 𝐷2) implies that IR (Σ, 𝐷1) ≥ IR (Σ, 𝐷2), where 𝜇 is the
integrality gap of the LP relaxation. The maximum number of tuples
involved in a violation of a constraint in Σ gives an upper bound on
this integrality gap. In particular, for FDs (as well for the EGDs in
Example 8), this number is 2; hence, IlinR (Σ, 𝐷1) ≥ 2 · IlinR (Σ, 𝐷2)
implies that IR (Σ, 𝐷1) ≥ IR (Σ, 𝐷2).

Example 9. Consider again the databases of Figure 1 and the
FDs of Example 1. In the LP of Figure 2, we define the variables
𝑥1, . . . , 𝑥5 corresponding to the facts 𝑓1, . . . , 𝑓5. Since 𝐷0 is consistent,
𝑀𝐼Σ (𝐷0) is empty, and we obtain a solution to the ILP by assign-
ing 𝑥𝑖 = 0 for all 𝑖 ∈ {1, . . . , 5}. For 𝐷1, we have that MIΣ (𝐷1) =
{{𝑡2, 𝑡3}, {𝑡2, 𝑡4}, {𝑡2, 𝑡5}, {𝑡3, 𝑡4}, {𝑡3, 𝑡5}, {𝑡4, 𝑡5}, {𝑡1, 𝑡5}}. For every
pair {𝑡𝑖 , 𝑡 𝑗 } ∈ MIΣ (𝐷1), the ILP contains a constraint 𝑥𝑖 + 𝑥 𝑗 ≥ 1. If
we assign 0.5 to all 𝑥𝑖 , all the constraints are satisfied. Assuming unit
cost for deletion, the total cost is IlinR (Σ, 𝐷1) = 2.5. Another possible
assignment is 𝑥1 = 0, 𝑥2 = 𝑥3 = 𝑥4 = 0.5, and 𝑥5 = 1. Note that
IlinR (Σ, 𝐷1) < IR (Σ, 𝐷1) = 3. However, for 𝐷2, the optimal cost is
IlinR (Σ, 𝐷2) = IR (Σ, 𝐷2) = 2, which can be obtained by assigning
0.5 to 𝑥2, 𝑥3, 𝑥4, 𝑥5 or by 𝑥2 = 𝑥4 = 1, 𝑥1 = 𝑥3 = 𝑥5 = 0.

The following theorem (proof is in the full version [41]) shows
that IlinR satisfies all four properties and can be efficiently computed
for the class CDC of denial constraints and the repair system R⊆ .

Theorem 2. The following hold for C = CDC and R = R⊆ .
(1) IlinR satisfies positivity, monotonicity, progression and constant

weighted continuity.
(2) IlinR can be computed in polynomial time (in data complexity).

It thus appears from Theorem 2 that, for tuple deletions and DCs,
IlinR is a desirable inconsistency measure—it satisfies the discussed
properties and avoids the inherent hardness of IR (e.g., Theorem 1).

5.3 More General Repair Systems
In our analysis of the satisfaction of the properties and computa-
tional complexity of different inconsistency measures, we focused
mostly on tuple deletions (i.e., where R = R⊆) under DCs. While
we have a good understanding of both aspects of inconsistency mea-
sures in this setting, the picture for other types of constraints and
repairing operations is quite preliminary. As an example, consider
the case of update repairs [33, 40], where the allowed repairing op-
erations are attribute updates. We again assume that the constraints
are DCs. Recall that we denote an attribute update by ⟨𝑖 .𝐴← 𝑐⟩(·),
where 𝑖 is a tuple identifier in 𝐷 , 𝐴 is an attribute, and 𝑐 is the new
value assigned to the fact 𝐷 [𝑖] in attribute 𝐴. Here, we assume a
countably infinite domain Val of possible attribute values.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1189

We observe that none of the measures considered so far is a
rational and tractable measure for update repairs. The satisfaction
of positivity andmonotonicity does not depend on the repair system
at hand; hence, IMI, IP, IMC, and I ′MC violate at least one of these
properties also for update repairs (see Table 2). When considering
progression, the measures no longer behave the same for subset and
update repairs. Clearly, Id still violates progression. As discussed
in Section 4, the measures IMI and IP satisfy progression in the
case of tuple deletions; however, both measures violate progression
when considering update repairs, even for the more restricted case
of FDs, as updating a single value does not necessarily completely
resolve a conflict between two facts in the database.

Example 10. Consider a database 𝐷 over 𝑅(𝐴, 𝐵,𝐶, 𝐷) consisting
of the facts 𝑅(0, 0, 0, 0) and 𝑅(0, 1, 0, 1). Let Σ = {𝐴 → 𝐵,𝐶 → 𝐷}.
The facts violate both FDs, and it is impossible to resolve both conflicts
by updating a single value. Hence, IMI (Σ, 𝐷) = IMI (Σ, 𝑜 (𝐷)) = 2
and IP (Σ, 𝐷) = IP (Σ, 𝑜 (𝐷)) = 2 for any attribute update 𝑜 . □

The above example shows that for update repairs, considering
violations at the fact level is insufficient, as a deletion of a single
fact resolves every conflict it is involved in, but this is not the case
when updating a single value in the fact. Hence, one may suggest
to consider a measure that counts the minimal violations instead of
the minimal inconsistent subsets. Here, a minimal violation is a pair
(𝐹, 𝜎), where 𝐹 ⊆ 𝐷 and 𝜎 is a constraint in Σ, such that 𝐹 ̸ |= 𝜎 , but
𝐹 ′ |= 𝜎 for all 𝐹 ′ ⊆ 𝐹 . Note that Example 10 is not a counterexample
for progression in this case, as we can always decrease the number
of violations by updating a single attribute value. Nonetheless, the
new measure still does not satisfy progression, as illustrated next.

Example 11. Let Σ = {𝐴 → 𝐵, 𝐵 → 𝐶, 𝐷 → 𝐴}. Let 𝐷 be a
database that contains the following four facts over 𝑅(𝐴, 𝐵,𝐶, 𝐷, 𝐸):

𝑓0 = 𝑅 (0, 0, 0, 0, 1) 𝑓1 = 𝑅 (0, 0, 0, 0, 2)
𝑓2 = 𝑅 (0, 1, 1, 0, 3) 𝑓3 = 𝑅 (0, 1, 1, 0, 4)

The minimal violations in 𝐷 are: ({𝑓0, 𝑓2}, 𝐴→ 𝐵), ({𝑓0, 𝑓3}, 𝐴→
𝐵), ({𝑓1, 𝑓2}, 𝐴 → 𝐵), and ({𝑓1, 𝑓3}, 𝐴 → 𝐵). Since the attributes
𝐶, 𝐷 , and 𝐸 are not involved in violations, updating values in these
attributes will not eliminate violations. Moreover, updating a value
in attribute 𝐵 to a value outside the domain of 𝐵 can only increase
the number of violations. Next, we show that the two remaining
operations: (1) updating a value in attribute 𝐴 to a new value, and
(2) updating a value in attribute 𝐵 to another value from its domain
(i.e., either 0 or 1), also increase the number of violations.

Suppose that we change the value of attribute𝐴 in 𝑓0 to 1. This op-
eration resolves the violations ({𝑓0, 𝑓2}, 𝐴→ 𝐵) and ({𝑓0, 𝑓3}, 𝐴→
𝐵), but introduces new violations: ({𝑓0, 𝑓1}, 𝐷 → 𝐴), ({𝑓0, 𝑓2}, 𝐷 →
𝐴), and ({𝑓0, 𝑓3}, 𝐷 → 𝐴). Hence, the total number of violations
increases. Clearly, updating the value of attribute 𝐴 in one of 𝑓1, 𝑓2,
or 𝑓3 will similarly increase the number of violations.

Next, suppose that we change the value of attribute 𝐵 in 𝑓0
to 1. This operation again resolves the violations ({𝑓0, 𝑓2}, 𝐴 →
𝐵) and ({𝑓0, 𝑓3}, 𝐴 → 𝐵). However, it introduces the violations
({𝑓0, 𝑓1}, 𝐴→ 𝐵), ({𝑓0, 𝑓2}, 𝐵 → 𝐶) and ({𝑓0, 𝑓3}, 𝐵 → 𝐶), and the
total number of violations increases. A similar argument applies
to the case when the value of attribute 𝐵 is changed in 𝑓1, 𝑓2, or 𝑓3.
Therefore, while there exists a sequence of operations that decreases
the number of violations, no individual operation does. □

Example 11 can be used to show that IMC and I ′MC violate pro-
gression as well. The measure IR satisfies progression, as we can
always update an attribute value from the minimum repair.

Proposition 3 implies that none of the measures considered so
far, except for IR , satisfies bounded continuity. The measure IR
satisfies bounded (weighted) continuity, since for any operation 𝑜
we have that ΔI,Σ (𝑜,𝐷1)

𝛿 ·𝜅 (𝑜,𝐷1) is either 1 (if 𝑜 belongs to a minimum repair)
or 0 (if no minimum repair contains 𝑜). We conclude that IR again
stands out among the measures as it satisfies every property. Hence,
in cases where IR is tractable (e.g., when no two constraints share
an attribute), this measure provides both rationality and tractability;
however, computing IR is often hard, even for simple FD sets [40].

Recall that in the case of R⊆ , the linear relaxation of IR can be
used to obtain a desired measure that is also efficient. This, however,
is no longer the case for updates. We do not have any natural linear
relaxation for attribute updates, and finding such ameasure remains
a challenging open problem for future research.
Remark. We again stress that a chosen measure of inconsistency
does not restrict the repair operations that a system allows or ap-
plies. Any repair system, supporting any type of operations whatso-
ever, could adopt measures such as IR (i.e., the maximum size of a
consistent subset) and IlinR . It is just that continuity and progression
are guaranteed only for deletion operations, and could be violated
otherwise. Indeed, our empirical experience, which we report in
the next section, draws an optimistic picture: these measures work
well in practical scenarios even for attribute updates.

6 EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of the con-
sidered measures under different error (and repair) models.

6.1 Setup
Datasets. We evaluate the measures on datasets that were pre-

viously used for the problem of mining constraints [8, 11, 37, 47]:
the real-world datasets Stock, Hospital, Food, Airport, Adult,
Flight, andVoter, and the synthetic Tax dataset. We use a DCmin-
ing algorithm [37] to obtain a set of DCs for each dataset. All DCs
are of the form ∀𝑡, 𝑡 ′¬(𝑃1, . . . , 𝑃𝑚), where 𝑡, 𝑡 ′ are database tuples,
each 𝑃𝑖 is a predicate 𝑡 [𝐴]𝜌𝑡 ′[𝐵], such that𝐴 and 𝐵 are attributes of
the schema, and 𝜌 is a comparison operator from {=,≠, >, <, ≥, ≤}.
(Note that it may be the case the 𝑡 = 𝑡 ′.) More details about the
datasets and constraints are given in Figure 3.

Measure implementations. We implemented all measures in Python
3 using Pandas. Using SQL, we materialize all conflicting pairs of
tuples. For example, the following DC over the Tax dataset:

∀𝑡, 𝑡 ′¬(𝑡 [St] = 𝑡 ′ [St], 𝑡 [Salary] > 𝑡 ′ [Salary], 𝑡 [Tax] < 𝑡 ′ [Tax])

(where St stands for “State”) will give rise to the query

SELECT DISTINCT 𝑅1 .ID, 𝑅2 .ID
FROM 𝑅 AS 𝑅1, 𝑅 AS 𝑅2

WHERE 𝑅1 .St = 𝑅2 .St, 𝑅1 .Salary > 𝑅2 .Salary, 𝑅1 .Tax < 𝑅2 .Tax .

For the measure Id, we simply return 1 if the query result is
nonempty and 0 otherwise. The measure IMI counts the tuples
in the query result, and IP counts the database facts that occur in
these tuples. To compute IMC, we use a C++ implementation [50]

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1190

Dataset #Tuples #Atts. #DCs Example constraint
Stock 123K 7 6 ∀𝑡¬(𝑡 [High] < 𝑡 [Low])

Hospital 115K 15 7 ∀𝑡, 𝑡′¬(𝑡 [State] = 𝑡′ [State], 𝑡 [Measure] = 𝑡′ [Measure], 𝑡 [StateAvg] ≠ 𝑡′ [StateAvg])
Food 200K 17 6 ∀𝑡, 𝑡′¬(𝑡 [Location] = 𝑡′ [Location], 𝑡 [City] ≠ 𝑡′ [City])

Airport 55K 9 6 ∀𝑡, 𝑡′¬(𝑡 [Country] = 𝑡′ [Country], 𝑡 [Continent] ≠ 𝑡′ [Continent])
Adult 32K 15 3 ∀𝑡, 𝑡′¬(𝑡 [Gain] < 𝑡′ [Gain], 𝑡 [Loss] < 𝑡′ [Loss])
Flight 500K 20 13 ∀𝑡, 𝑡′¬(𝑡 [Origin] = 𝑡′ [Origin], 𝑡 [Dest] = 𝑡′ [Dest], 𝑡 [Distance] ≠ 𝑡′ [Distance])
Voter 950K 22 5 ∀𝑡, 𝑡′¬(𝑡 [BirthYear] < 𝑡′ [BirthYear], 𝑡 [Age] > 𝑡′ [Age])
Tax 1M 15 9 ∀𝑡, 𝑡′¬(𝑡 [State] = 𝑡′ [State], 𝑡 [Salary] > 𝑡′ [Salary], 𝑡 [Rate] < 𝑡′ [Rate])

Sto
ck

Ho
sp
ita
l
Fo
od

Ai
rp
or
t

Ad
ul
t

Fli
gh
t
Vo
ter Ta

x

0

0.5

1

Figure 3: The datasets used in our experiments. On the right: the level of attribute overlapping of the constraints.

of an algorithm for enumerating the maximal cliques [15] over the
complement of the conflict graph. The conflict graph is also built
from the result of the above SQL query: we add a vertex for each
fact and an edge for each fact pair in the result. We use the Gurobi
Optimizer [27] to compute IR and IlinR using the LP of Figure 2. We
dynamically construct the LP from the result of the SQL query (i.e.,
we add a corresponding constraint for each fact pair in the result).

Noise Generation. Initially, all datasets are consistent w.r.t. the
given set of DCs. We use two algorithms to add noise to these
datasets. In the first, whichwe refer to asCONoise (forConstraint-
OrientedNoise), we introduce randomviolations of the constraints,
by running several iterations of the following procedure:

(1) Randomly select a constraint 𝜑 from the set of constraints.
(2) Randomly select two tuples 𝑡 and 𝑡 ′ from the database.
(3) For every predicate 𝑃 = (𝑡 [𝐴] 𝜌 𝑡 ′[𝐵]) of 𝜑 :
• If 𝑡 and 𝑡 ′ jointly satisfy 𝑃 , continue to the next predicate.
• If 𝜌 ∈ {=, ≤, ≥}, change either 𝑡 [𝐴] to 𝑡 [𝐵] or vice versa
(the choice is random).
• If 𝜌 ∈ {<, >,≠}, change either 𝑡 [𝐴] or 𝑡 [𝐵] (the choice is
again random) to another value from the active domain of
the attribute such that 𝑃 is satisfied, if such a value exists,
or a random value in the appropriate range otherwise.

The second algorithm, RNoise (for Random Noise), has two
parameters: 𝛼 is used to control the level of noise (we modify 𝛼

of the values in the dataset), and 𝛽 , controls the data skewness, as
we now explain. At each iteration of RNoise, we randomly select a
database cell corresponding to an attribute that occurs in at least one
constraint. Then, we either change its value to another value from
the active domain of the corresponding attribute (with probability
0.5) or to a typo. For the first case, we use the Zipfian distribution,
where the probability of selecting the 𝑖th value in the active domain
is proportional to 𝑖−𝛽 ; hence, larger 𝛽 means larger skew.

General setup. All experiments were executed on a server with
two Intel(R) Xeon(R) Gold 6130 CPUs (2.10GHz, 16 cores) with
512GB of RAM running Ubuntu 20.04. Each experiment was re-
peated five times and the average times are reported. The graphs of
Figures 4 and 5 were obtained in one execution and are representa-
tive of all five executions, where we observed a similar behavior.

6.2 Results
6.2.1 Measure Behavior. We evaluate the behavior of the measures
on samples of 10K tuples from each dataset. First, we run 200 it-
erations of CONoise on each dataset and compute the measure
values after each iteration; the results are in Figure 4a. Then, we

run RNoise with 𝛽 = 0, 𝛽 = 1, and 𝛽 = 2 until we modify 1% of the
values in the dataset (hence, 𝛼 = 0.01). As the number of iterations
may be high, we compute the measure values every ten iterations.
The results for 𝛽 = 0 are depicted in Figure 4b, and the (similar)
results for 𝛽 = 1, 2 are in the extended version [41], where we also
test different probabilities for typos. We report the final violation
ratio (i.e., percentage of violating tuple pairs out of all pairs) ob-
tained in the experiments above each diagram (in parentheses).
Note that when we modify values in an iteration of CONoise or
RNoise, we may introduce several violations at once, and resolve
other violations at the same time. In our experiments, we observed
that the number of newly introduced violations is usually signifi-
cantly higher than the number of resolved ones, as evidenced by
the behavior of IMI (that counts violations) in the charts of Figure 4:
its value generally increases with the number of iterations.

Variations with noise. In general, we see that the measures
may behave very differently on the same dataset. As expected, the
drastic measure Id jumps from zero to one when we introduce
the first violation, and stays at that point until the end of the ex-
ecution. We see that the measure IP often behaves in a similar
way. For example, on the Airport dataset, it jumps from zero to
its maximal value already in the first iteration. This behavior can
be explained by observing the constraint set used for this dataset.
For example, one of the DCs in this set is ∀𝑡, 𝑡 ′¬(𝑡 [Country] =
𝑡 ′[Country], 𝑡 [Continent] ≠ 𝑡 ′[Continent]), and all the tuples in
the dataset initially agree on the value of the country and continent
attributes. Hence, whenever we change the value of the continent
attribute for a single tuple, all the other tuples are immediately
involved in a violation with it, and the value of IP jumps to #tuples.

Contrarily, the measure IR is able to recognize, in this example,
that the dataset contains a single erroneous tuple, and react to this
small change in a more proportional way. In general, we see that
the measures IR , IlinR , and IMI behave similarly in most cases and
the corresponding graphs are generally monotonically increasing
and close to being linear. While this behavior seems to be very
consistent for IR and IlinR , the measure IMI is slightly less stable,
as can be seen, for example, on the Food dataset in Figure 4b.

Due to the high computational cost of IMC (as we report later
on), we evaluate its behavior on a small sample of 100 tuples from
each dataset. The results are in Figure 5; missing graphs are due to
timeout. The left chart is for CONoise and the right is for RNoise
with 𝛽 = 0. We run both algorithms for 100 iterations. Observe
that this measure is the least stable of all, as we get very different
graphs on the different datasets. In particular, on the Stock dataset
it resembles a step function and fails to indicate progress for long

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1191

0 50 100 150 200
0

0.2
0.4
0.6
0.8
1

M
ea
su
re

va
lu
e Tax (0.04%)

0 50 100 150 200
0

0.2
0.4
0.6
0.8
1
Stock (0.0003%)

0 50 100 150 200
0

0.2
0.4
0.6
0.8
1
Hospital (0.07%)

0 50 100 150 200
0

0.2
0.4
0.6
0.8
1
Food (0.0002%)

0 50 100 150 200
0

0.2
0.4
0.6
0.8
1

Iteration

M
ea
su
re

va
lu
e Airport (1.17%)

0 50 100 150 200
0

0.2
0.4
0.6
0.8
1

Iteration

Adult (1.74%)

0 50 100 150 200
0

0.2
0.4
0.6
0.8
1

Iteration

Flight (0.27%)

0 50 100 150 200
0

0.2
0.4
0.6
0.8
1

Iteration

Voter (1.45%)

(a)Noise added with CONoise.

0 500 1,000 1,500
0

0.2
0.4
0.6
0.8
1

M
ea
su
re

va
lu
e Tax (0.05%)

0 200 400 600
0

0.2
0.4
0.6
0.8
1
Stock (0.0003%)

0 500 1,000 1,500
0

0.2
0.4
0.6
0.8
1
Hospital (0.18%)

0 500 1,000 1,500
0

0.2
0.4
0.6
0.8
1
Food (0.001%)

0 200 400 600 800
0

0.2
0.4
0.6
0.8
1

Iteration

M
ea
su
re

va
lu
e Airport (1.44%)

0 500 1,000 1,500
0

0.2
0.4
0.6
0.8
1

Iteration

Adult (1.89%)

0 1,000 2,000
0

0.2
0.4
0.6
0.8
1

Iteration

Flight (0.95%)

0 1,000 2,000
0

0.2
0.4
0.6
0.8
1

Iteration

Voter (3.9%)

(b)Noise added with RNOise (𝛼 = 0.01 and 𝛽 = 0).

Figure 4: The normalized values of Id (), IMI (), IP (), IR (), and IlinR (). Violation ratio in parentheses.

periods of time. On the Airport dataset, we see a lot of jumps and
jitters on these graphs. This behavior may be affected, to some
extent, by the small size of the datasets. However, the charts that
we obtain for the other measures in this case (given in [41]), while
also less stable, follow a similar trend as the ones in Figure 4.

Error rate, data skew, and overlapping constraints. The
experiments indicate that the behavior of the measures is largely
stable across several properties of the data and constraints. We
can see that the error rate, which increases with the number of
iterations, affects the value of the measures, but has no evident
impact on their behavior (i.e., the trend of the graph). Moreover,
we obtain very similar charts in the experiments with 𝛽 = 1, 2 and
distinct typo probabilities (see [41]); hence, data skew and different

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8
1

Iteration

M
ea
su
re

va
lu
e

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8
1

Iteration
Figure 5: IMC (normal.): Stock (), Hospital (), Food
(), Airport (), Adult (), Flight (), Voter (),
100 iterations. Left: CONoise, Right: RNoise (𝛽 = 0).

distributions of error types also do not seem to affect the results.
Finally, we examine how overlap of dependencies affects the results.
For each dataset, and for each DC in its constraint set, we compute
the ratio of DCs that overlap with it (i.e., the DCs share at least
one attribute). Figure 3 (right) shows the minimum, maximum, and
average values for each dataset. We again see no clear correlation
between the behavior of the measures and level of overlap.

6.2.2 Case study: the HoloClean repair system. Up to now, we de-
scribed experiments with our synthetic noise generation models.
We have shown that the behavior of the measures is robust to the op-
erations and is not sensitive to various parameters of the input such
as data skew, error rate, and overlap of constraints. We now further
strengthen this finding by showing similar results on a cleaning sys-
tem that we treat as a black box, namely the HoloClean system [48],
that uses soft rules and a statistical approach for automatic data
cleaning. To accurately analyze the behavior of our measures, we
need a dataset where the behavior of HoloClean is predictable;
hence, we run the system on the (dirty) Hospital dataset provided
in the HoloClean repository (https://github.com/HoloClean) with a
set of 15 DCs. It has been shown that the accuracy of HoloClean on
this dataset is very high [48]; thus, the system should significantly
decrease the level of inconsistency in this dataset.

Since HoloClean features one-shot automatic cleaning, we simu-
late a cleaning pipeline by providing it with a single DC at a time.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1192

https://github.com/HoloClean

Table 3: Running Times in sec. (The IMC measure and the
Voter dataset are excluded due to timeout.)

Id IR IMI IP IlinR
Tax 8092.894 10102.15 8092.894 8275.692 8804.30
Stock 1.16 1.16 1.16 1.28 1.16

Hospital 199.08 212.59 199.08 200.19 207.91
Food 89.38 89.92 89.38 91.25 89.81

Airport 61.64 78.96 61.64 63.33 73.77
Adult 119.19 240.96 119.19 132.30 179.31
Flight 8084.05 8222.35 8084.05 8138.40 8157.30

That is, we first run HoloClean on the original dataset with a single
DC; then on the resulting dataset after adding one more DC to
the constraint set, and so on. Note that HoloClean uses soft con-
straints; hence, it does not necessarily eliminate all violations. We
compute the measures after every step; the (normalized) values are
in Figure 7. We tried several random permutations of the DCs and
obtained similar results. Again, we see that Id and IP fall short
of effectively indicating progress. Contrarily, the other measures,
particularly IR and IlinR , are able to capture the reduction in the
inconsistency level, and show an almost linear decay as desired.

6.2.3 Running Times. We now study the running times of the mea-
sures we discussed in the paper. We stress that our focus is not on
optimizing these measures, but rather on understanding the execu-
tion cost obtained in reasonable implementations. Table 3 shows
the average running times of the measures on all datasets after
running #tuples/1000 iterations of CONoise (with the number of
tuples reported in Figure 3). The computation of IMC exceeded our
24-hour limit on all datasets (and, in some cases, even on datasets
with only one hundred tuples). An immediate conclusion is that
IMC is not only behaving oddly, but is prohibitively infeasible. The
Voter dataset (that we discuss next) is also excluded due to timeout.

We can see that the running times of the measures are usually
close to each other. This is because the dominant part of the com-
putation of IR and IlinR for large datasets is the evaluation of the
SQL query that finds all violations of the constraints. In the case of
the Voter dataset, the SQL engine reached the 24-hour limit. The
domination of the SQL computation can also be seen in Figure 6a
that depicts the running times of all the measures, except for IMC
(again, due to timeout), on samples of the Tax dataset, consisting
of 100K to 1M tuples. The figure shows a quadratic trend, which is
consistent with the complexity of the dominating SQL part.

This is not the case, however, for smaller datasets, as can be seen
in Figure 6b. This chart depicts the running times of themeasures on

0 200 400 600 800 1,000
0

0.2
0.4
0.6
0.8
1
·104

#tuples (thousands)

Ru
nn

in
g
tim

e
(s
ec
)

(a)

0 500 1,000 1,500 2,000
0

200

400

Iteration
(b)

Figure 6: Scalability in |𝐷 | on Tax (a) and error rate on Voter
(b): Id (), IMI (), IP (), IR (), and IlinR ().

0 5 10 15
0

0.2
0.4
0.6
0.8
1

#DCs

M
ea
su
re

va
lu
e

Figure 7: HoloClean case study—normalized measures on
Hospital: Id (), IMI (), IP (), IR (), IlinR ().

a sample of 10K tuples from the Voter dataset. There, we add noise
using RNoise with 𝛼 = 0.01 and 𝛽 = 0, and compute the running
times every ten iterations. The evaluation of the SQL query is quite
fast on these smaller datasets, and the computation of IR and IlinR
is now dominated by the LP solver. We also see a more significant
difference in running times between these measures. While the
computation of Id, IMI, and IP is only slightly affected by the
change in error rate (that increases with the number of iterations),
the computations of IR significantly increases with the increased
error rate. We provide similar charts for the other datasets in [41].

7 CONCLUDING REMARKS
We explored inconsistency measures for databases, and investi-
gated the properties that should be accounted for in the choice of a
measure for a specific use case. We discussed four properties where
two, continuity and progression, are defined in the context of the
underlying repair system. We also used the properties to reason
about various specific instances of inconsistency measures. The
combination of the properties and the computational complexity
shed a positive light on the linear relaxation of minimal repairing
when considering DCs and tuple deletions. In fact, the design of this
measure is driven by that combination, and is not as interpretable
as the others. Our experimental study shows that the measures that
well behave theoretically for tuple deletions also exhibit a good
empirical behavior, even when our error models capture attribute
updates rather than tuple insertions (to be remedied by tuple dele-
tions). These measures were also able to effectively capture progress
in our HoloClean case study.

This work opens the way to an important angle of inconsistency
measurement that has not been treated before, and many funda-
mental problems remain open. We plan to explore other properties
as well as completeness criteria for sets of properties to determine
sufficiency for certain use cases. Another important direction is to
explore more general repair systems (allowing different types of
constraints and repairing operations). It is also interesting to inves-
tigate the adaption of Grant and Hunter’s concept of information
loss [24], and explore the trade-off between inconsistency reduction
and information loss, in the context of database repairing. The final
goal is to devise actual measures that are practically useful, efficient
to compute, and justified by a clear theoretical ground.

Acknowledgements. This work was supported by the German Re-
search Foundation (DFG) Project 412400621 (DIP program) and the
Israel Science Foundation (ISF), Grant 768/19. The work of Sudeepa
Roy was supported by NSF awards IIS-1552538, IIS-1703431, IIS-
2008107, and NIH award R01EB025021. We also thank the reviewers
of this paper for very helpful comments and suggestions.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1193

REFERENCES
[1] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas,

Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016. De-
tecting Data Errors: Where are we and what needs to be done? Proc. VLDB Endow.
9, 12 (2016), 993–1004.

[2] Foto N. Afrati and Phokion G. Kolaitis. 2009. Repair checking in inconsistent
databases: algorithms and complexity. In ICDT, Vol. 361. ACM, 31–41.

[3] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Consistent Query
Answers in Inconsistent Databases. In PODS. ACM Press, 68–79.

[4] Catriel Beeri and Moshe Y. Vardi. 1981. The Implication Problem for Data
Dependencies. In ICALP, Vol. 115. Springer, 73–85.

[5] Leopoldo E. Bertossi. 2018. Measuring and Computing Database Inconsistency
via Repairs. CoRR abs/1804.08834 (2018).

[6] Leopoldo E. Bertossi. 2018. Measuring and Computing Database Inconsistency
via Repairs. In SUM (Lecture Notes in Computer Science, Vol. 11142). Springer,
368–372.

[7] Leopoldo E. Bertossi, Loreto Bravo, Enrico Franconi, and Andrei Lopatenko. 2008.
The complexity and approximation of fixing numerical attributes in databases
under integrity constraints. Inf. Syst. 33, 4-5 (2008), 407–434.

[8] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial
Constraint Discovery with Hydra. PVLDB 11, 3 (2017), 311–323.

[9] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-
etsidis. 2007. Conditional Functional Dependencies for Data Cleaning. In ICDE.
IEEE, 746–755.

[10] Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muham-
mad Tibi. 2020. Database Repairing with Soft Functional Dependencies. CoRR
abs/2009.13821 (2020).

[11] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints.
PVLDB 6, 13 (2013), 1498–1509.

[12] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting
violations into context. In ICDE. IEEE Computer Society, 458–469.

[13] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. 2007. Improving
Data Quality: Consistency and Accuracy. In VLDB. ACM, 315–326.

[14] Alex Paul Conn. 1995. Time Affordances: The Time Factor in Diagnostic Usability
Heuristics. In SIGCHI (Denver, Colorado, USA) (CHI ’95). ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 186–193. https://doi.org/10.1145/
223904.223928

[15] Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. 2016. Sublinear-
Space Bounded-Delay Enumeration for Massive Network Analytics: Maximal
Cliques. In ICALP (LIPIcs, Vol. 55). Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 148:1–148:15.

[16] Amr Ebaid, Ahmed K. Elmagarmid, Ihab F. Ilyas, Mourad Ouzzani, Jorge-Arnulfo
Quiané-Ruiz, Nan Tang, and Si Yin. 2013. NADEEF: A Generalized Data Cleaning
System. PVLDB 6, 12 (2013), 1218–1221.

[17] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Con-
ditional functional dependencies for capturing data inconsistencies. ACM Trans.
Database Syst. 33, 2 (2008), 6:1–6:48.

[18] Ariel Fuxman and Renée J. Miller. 2007. First-order query rewriting for in-
consistent databases. J. Comput. Syst. Sci. 73, 4 (2007), 610–635. https:
//doi.org/10.1016/j.jcss.2006.10.013

[19] Terry Gaasterland, Parke Godfrey, and Jack Minker. 1992. An Overview of
Cooperative Answering. J. Intell. Inf. Syst. 1, 2 (1992), 123–157.

[20] Jaffer Gardezi, Leopoldo E. Bertossi, and Iluju Kiringa. 2011. Matching dependen-
cies with arbitrary attribute values: semantics, query answering and integrity
constraints. In LID. 23–30.

[21] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2013.
The LLUNATIC Data-Cleaning Framework. PVLDB 6, 9 (2013), 625–636.

[22] Oded Goldreich, Shafi Goldwasser, and Dana Ron. 1998. Property Testing and
its Connection to Learning and Approximation. J. ACM 45, 4 (1998), 653–750.
https://doi.org/10.1145/285055.285060

[23] John Grant and Anthony Hunter. 2006. Measuring inconsistency in knowledge-
bases. J. Intell. Inf. Syst. 27, 2 (2006), 159–184.

[24] John Grant and Anthony Hunter. 2011. Measuring Consistency Gain and In-
formation Loss in Stepwise Inconsistency Resolution. In ECSQARU, Vol. 6717.
Springer, 362–373.

[25] John Grant and AnthonyHunter. 2013. Distance-BasedMeasures of Inconsistency.
In ECSQARU (Lecture Notes in Computer Science, Vol. 7958). Springer, 230–241.

[26] John Grant and Anthony Hunter. 2017. Analysing inconsistent information
using distance-based measures. Int. J. Approx. Reasoning 89 (2017), 3–26. https:
//doi.org/10.1016/j.ijar.2016.04.004

[27] LLC Gurobi Optimization. 2020. Gurobi Optimizer Reference Manual. http:
//www.gurobi.com

[28] Chris Harrison, Brian Amento, Stacey Kuznetsov, and Robert Bell. 2007. Rethink-
ing the Progress Bar. In UIST (Newport, Rhode Island, USA) (UIST ’07). ACM,
New York, NY, USA, 115–118.

[29] Chris Harrison, Zhiquan Yeo, and Scott E. Hudson. 2010. Faster Progress Bars:
Manipulating Perceived Duration with Visual Augmentations. In SIGCHI (Atlanta,
Georgia, USA) (CHI ’10). ACM, New York, NY, USA, 1545–1548.

[30] Anthony Hunter and Sébastien Konieczny. 2008. Measuring Inconsistency
through Minimal Inconsistent Sets. In KR. AAAI Press, 358–366.

[31] Anthony Hunter and Sébastien Konieczny. 2010. On the measure of conflicts:
Shapley Inconsistency Values. Artif. Intell. 174, 14 (2010), 1007–1026.

[32] Kevin M. Knight. 2003. Two Information Measures for Inconsistent Sets. Journal
of Logic, Language and Information 12, 2 (2003), 227–248.

[33] Solmaz Kolahi and Laks V. S. Lakshmanan. 2009. On approximating optimum
repairs for functional dependency violations. In ICDT, Vol. 361. ACM, 53–62.

[34] Sébastien Konieczny, Jérôme Lang, and Pierre Marquis. 2003. Quantifying infor-
mation and contradiction in propositional logic through test actions. In IJCAI.
Morgan Kaufmann, 106–111.

[35] Paraschos Koutris and Jef Wijsen. 2017. Consistent Query Answering for Self-
Join-Free Conjunctive Queries Under Primary Key Constraints. ACM Trans.
Database Syst. 42, 2 (2017), 9:1–9:45.

[36] Sebastian Kruse, Paolo Papotti, and Felix Naumann. 2015. Estimating Data
Integration and Cleaning Effort. In EDBT. OpenProceedings.org, 61–72.

[37] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approx-
imate Denial Constraints. Proc. VLDB Endow. 13, 10 (2020), 1682–1695.

[38] Ester Livshits and Benny Kimelfeld. 2017. Counting and Enumerating (Preferred)
Database Repairs. In PODS. ACM, 289–301.

[39] Ester Livshits and Benny Kimelfeld. 2020. The Shapley Value of Inconsistency
Measures for Functional Dependencies. CoRR abs/2009.13819 (2020).

[40] Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. 2020. Computing Optimal
Repairs for Functional Dependencies. ACM Trans. Database Syst. 45, 1 (2020),
4:1–4:46.

[41] Ester Livshits, Rina Kochirgan, Segev Tsur, Ihab F. Ilyas, Benny Kimelfeld, and
Sudeepa Roy. 2021. Properties of Inconsistency Measures for Databases. CoRR
abs/1904.06492v3 (2021).

[42] Andrei Lopatenko and Leopoldo E. Bertossi. 2007. Complexity of Consistent
Query Answering in Databases Under Cardinality-Based and Incremental Repair
Semantics. In ICDT. 179–193.

[43] Gang Luo, Jeffrey F. Naughton, Curt J. Ellmann, and Michael Watzke. 2004.
Toward a Progress Indicator for Database Queries. In SIGMOD. 791–802.

[44] Maria Vanina Martinez, Andrea Pugliese, Gerardo I. Simari, V. S. Subrahmanian,
and Henri Prade. 2007. How Dirty Is Your Relational Database? An Axiomatic
Approach. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
Khaled Mellouli (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 103–114.

[45] Brad A. Myers. 1985. The Importance of Percent-done Progress Indicators for
Computer-human Interfaces. In SIGCHI (San Francisco, California, USA) (CHI
’85). ACM, New York, NY, USA, 11–17.

[46] Francesco Parisi and John Grant. 2019. Inconsistency Measures for Relational
Databases. CoRR abs/1904.03403 (2019).

[47] Eduardo H. M. Pena, Eduardo C. de Almeida, and Felix Naumann. 2019. Discovery
of Approximate (and Exact) Denial Constraints. PVLDB 13, 3 (2019).

[48] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:
Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017), 1190–
1201.

[49] Matthias Thimm. 2017. On the Compliance of Rationality Postulates for Incon-
sistency Measures: A More or Less Complete Picture. KI 31, 1 (2017), 31–39.

[50] Luca Versari, Daniele De Sensi, Alessio Conte, and Tiziano De Matteis. 2019.
parallel enum. https://github.com/veluca93/parallel_enum.

[51] Ana Villar, Mario Callegaro, and Yongwei Yang. 2013. Where Am I? A Meta-
Analysis of Experiments on the Effects of Progress Indicators for Web Surveys.
Soc. Sci. Comput. Rev. 31, 6 (Dec. 2013), 744–762.

[52] Jef Wijsen. 2005. Database repairing using updates. ACM Trans. Database Syst.
30, 3 (2005), 722–768.

[53] Bruno Yun, Srdjan Vesic, Madalina Croitoru, and Pierre Bisquert. 2018. Inconsis-
tency Measures for Repair Semantics in OBDA. In IJCAI. ijcai.org, 1977–1983.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1194

https://doi.org/10.1145/223904.223928
https://doi.org/10.1145/223904.223928
https://doi.org/10.1016/j.jcss.2006.10.013
https://doi.org/10.1016/j.jcss.2006.10.013
https://doi.org/10.1145/285055.285060
https://doi.org/10.1016/j.ijar.2016.04.004
https://doi.org/10.1016/j.ijar.2016.04.004
http://www.gurobi.com
http://www.gurobi.com
https://github.com/veluca93/parallel_enum

	Abstract
	1 Introduction
	2 Preliminaries
	3 Inconsistency Measures
	4 Properties of Measures
	5 Rational and Tractable Measures
	5.1 Computational Complexity
	5.2 The Subset Repair System
	5.3 More General Repair Systems

	6 Experimental Evaluation
	6.1 Setup
	6.2 Results

	7 Concluding Remarks
	References

