
Theory Comput Syst (2017) 61:2–30
DOI 10.1007/s00224-016-9684-2

Answering Conjunctive Queries with Inequalities

Paraschos Koutris1 ·Tova Milo2 ·Sudeepa Roy1 ·
Dan Suciu1

Published online: 7 June 2016
© Springer Science+Business Media New York 2016

Abstract In this paper, we study the complexity of answering conjunctive queries
(CQ) with inequalities (�=). In particular, we are interested in comparing the complex-
ity of the query with and without inequalities. The main contribution of our work is
a novel combinatorial technique that enables us to use any Select-Project-Join query
plan for a given CQ without inequalities in answering the CQ with inequalities, with
an additional factor in running time that only depends on the query. The key idea
is to define a new projection operator, which keeps a small representation (indepen-
dent of the size of the database) of the set of input tuples that map to each tuple in
the output of the projection; this representation is used to evaluate all the inequali-
ties in the query. Second, we generalize a result by Papadimitriou and Yannakakis
(1997) and give an alternative algorithm based on the color-coding technique (2008)
to evaluate a CQ with inequalities by using an algorithm for the CQ without inequal-
ities. Third, we investigate the structure of the query graph, inequality graph, and
the augmented query graph with inequalities, and show that even if the query and
the inequality graphs have bounded treewidth, the augmented graph not only can
have an unbounded treewidth but can also be NP-hard to evaluate. Further, we illus-
trate classes of queries and inequalities where the augmented graphs have unbounded
treewidth, but the CQ with inequalities can be evaluated in poly-time. Finally, we give

This work has been partially funded by the NSF awards IIS-1247469 and IIS-0911036, European
Research Council under the FP7, ERC grant MoDaS, agreement 291071 and by the Israel Ministry
of Science.

� Paraschos Koutris
pkoutris@cs.washington.edu

1 University of Washington, Seattle WA, USA

2 Tel Aviv University, Tel Aviv, Israel

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-016-9684-2&domain=pdf
mailto:pkoutris@cs.washington.edu

Theory Comput Syst (2017) 61:2–30 3

necessary properties and sufficient properties that allow a class of CQs to have poly-
time combined complexity with respect to any inequality pattern. We also illustrate
classes of queries where our query-plan-based technique outperforms the alternative
approaches discussed in the paper.

Keywords Query evaluation · Conjunctive query · Inequality · Treewidth

1 Introduction

In this paper, we study the complexity of answering conjunctive queries (CQ) with
a set of inequalities of the form xi �= xj between variables in the query. The com-
plexity of answering CQs without inequalities has been extensively studied in the
literature during the past three decades. Query evaluation of CQs is NP-hard in terms
of combined complexity (where both the query and the database are inputs), while
the data complexity of CQs (where the query is fixed) is in AC0 [1]. Yannakakis [24]
showed that evaluation of acyclic CQs has polynomial-time combined complexity.
This result was later generalized to CQs with bounded treewidth, bounded query-
width, or bounded hypertreewidth: the combined complexity remains polynomial if
the width of a tree or query decomposition of the query hypergraph is bounded [6, 9,
10, 16].

However, the complexity of query evaluation c;hanges drastically once we add
inequalities in the body of the query. Consider the following Boolean acyclic family
of CQs P k:

P k() = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1)

This query can be computed in O(k|D|) time on an instance D by evaluating the
joins from left to right, since at any intermediate step that we join with relation Rj

we only need to keep a projection on variable xj . If we add the inequalities xi �= xj

for every i < j and evaluate it on an instance where each R�, 1 ≤ � ≤ k, corresponds
to the edges in a graph with k + 1 vertices, query evaluation becomes equivalent to
asking whether the graph contains a Hamiltonian path, and therefore is NP-hard in k.
Papadimitriou and Yannakakis [21] observed this fact and showed that the problem
is fixed-parameter tractable for acyclic CQs:

Theorem 1 ([21]) Let q be an acyclic CQ with inequalities and D be a database
instance. Then, q can be evaluated in time 2O(k log k) · |D| log2 |D| where k is the
number of variables in q that appear in some inequality.

The proof is based on the color-coding technique introduced by Alon-Yuster-
Zwick in [4] that finds subgraphs in a graph. In general, answering CQs with
inequalities is closely related to finding patterns in a graph, which has been exten-
sively studied in the context of graph theory and algorithms. For example, using
the idea of representative sets, Monien [19] showed the following: given a graph
G(V, E) and a vertex s ∈ V , there exists a deterministic O(k! · |E|) algorithm that
finds all vertices v with a length-k path from s and also reports these paths (a trivial
algorithm will run in time O(|V |k)). Later, Alon et al. proposed the much simpler

4 Theory Comput Syst (2017) 61:2–30

color-coding technique that can solve the same problem in expected time 2O(k)|V |
for undirected graphs and 2O(k)|E| for directed graphs. These two ideas have been
widely used to find other patterns in a graph, e.g., for finding cycles of even length
[3, 4, 26].

In the context of databases, Klug [15] studied the problems of query contain-
ment and equivalence for CQs with comparison operators between variables (<, ≤
etc.) under the assumption that the data domains are dense (e.g., rational numbers)
and totally ordered, and showed that these problems are in �

p

2 . Papadimitriou and
Yannakakis [21] showed that answering acyclic CQs with comparison operators is
harder than answering acyclic CQs with inequalities (�=) since this problem is no
longer fixed-parameter tractable. The query containment problem for CQs with com-
parisons and inequalities (�=, <, ≤), i.e., whether Q1 ⊆ Q2, has been shown to be
�

p

2 -complete by van der Meyden [18]; the effect of several syntactic properties of
Q1, Q2 on the complexity of this problem has been studied by Kolaitis et al. [16].
Durand and Grandjean [8] improved Theorem 1 from [21] by reducing the time
complexity by a log2|D| factor. Answering queries with views in the presence of
comparison operators has been studied by Afrati et al. [2].

From a practical point of view, the query optimizers of state-of-the-art database
systems do not use any specific techniques to optimize for inequality conditions in the
WHERE clause. In most cases, query optimizers do not even use available indexes
for applying the inequality conditions, since scanning the table is almost always a
cheaper alternative. The most relevant work to our setting is evaluation of queries
with inequality joins [14], where the join has conditions of the form R.A ≤ S.B.

Our Contributions In this paper we focus on the combined complexity of answer-
ing CQs with inequalities (�=) where we explore both the structure of the query and
the inequalities. Let q be a CQ with a set of variables, I be a set of inequalities of the
form xi �= xj , and k be the number of variables that appear in one of the inequalities
in I (k < |q|). We will use (q, I) to denote q with inequalities I, and D to denote the
database instance. We will refer to the combined complexity in |D|, |q|, k by default
(and not the data complexity on |D|) unless mentioned otherwise.

Consider any Select-Project-Join (SPJ) query plan for a given CQ, which is sim-
ply a relational algebra expression that uses only selection (σ), projection (�), and
join (��) operators (see for example Fig. 3). The main result in this paper says that
any such SPJ query plan for evaluating a CQ can be converted to a query plan for
evaluating the same CQ with arbitrary inequalities, and the increase in running time
is a factor that only depends on the query:

Theorem 2 (Main Theorem) Let q be a CQ that can be evaluated in time
T (|q|, |D|) using a Select-Project-Join (SPJ) query plan Pq . Then, we can con-
struct a query plan Pq,I that evaluates the query (q, I) in time g(q, I) ·
max(T (|q|, |D|), |D|), where g is a function that is independent of the input
database.1

1Some queries like q() = R(x)S(y) can be evaluated in constant time whereas to evaluate the inequality
constraints we need to scan the relations in D.

Theory Comput Syst (2017) 61:2–30 5

The key techniques used to prove the above theorem (Sections 3 and 4), and our
other contributions in this paper (Sections 5, 6, and 7) are summarized below.

1. (Sections 3, 4) First, we give the proof of Theorem 2. Our main technical con-
tribution is a new projection operator, called H-projection. While the standard
projection in relational algebra removes all other attributes for each tuple in the
output, the new operator computes and retains a certain representation of the
group of input tuples that contribute to each tuple in the output. This repre-
sentation is of size independent of the database and allows the updated query
plan to still correctly filter out certain tuples that do not satisfy the inequalities.
In Section 3 we present the basic algorithmic components of this operator. In
Section 4, we show how to apply this operator to transform the given query plan
to another query plan that incorporates the added inequalities.

2. (Section 5) We generalize Theorem 1 to arbitrary CQs with inequalities (i.e.,
not necessarily acyclic) by a simple application of the color-coding technique. In
particular, we show (Theorem 6) that any algorithm that computes a CQ q on a
database D in time T (|q|, |D|) can be extended to an algorithm that can evaluate
(q, I) in time f (k) · log(|D|) · T (|q|, |D|). While Theorem 2 and Theorem 6
appear similar, there are several advantages of using our algorithm over the color-
coding-based technique which we also discuss in Section 5.

3. (Section 6) The multiplicative factors dependent on the query in Theorem 1,
Theorem 6, and (in the worst case) Theorem 2 are exponential in k. In Section 6
we investigate the combined structure of the queries and inequalities that allow
or forbid poly-time combined complexity. We show that, even if q and I have
a simple structure, answering (q, I) can be NP-hard in k (Proposition 1). We
also present a connection with the list coloring problem that allows us to answer
certain pairings of queries with inequalities in poly-time combined complexity
(Proposition 3).

4. (Section 7) We provide a sufficient condition for CQs, bounded fractional vertex
cover, that ensures poly-time combined complexity when evaluated with any
set of inequalities I. Moreover, we show that families of CQs with unbounded
integer vertex cover are NP-hard to evaluate in k (Theorem 7).

In addition, in Section 2, we review some useful notions (e.g., tree decomposition,
treewidth, acyclicity of a query) and define query, inequality, and augmented graphs
that are used in the rest of the paper; we conclude in Section 8 with directions of
future research.

Comparison with the conference version [17] This paper is an extended version
of [17], which was published in the International Conference on Database Theory
(ICDT), 2015. The following material has been added in this journal submission:

1. The proof of Lemma 2.
2. The proof of Lemma 3.
3. The proof of Lemma 4.
4. The algorithm for the cycle query C2k with inequalities, presented at the end of

Section 4.

6 Theory Comput Syst (2017) 61:2–30

5. The proof of Theorem 6.
6. The proof of Theorem 1.
7. The proof of Proposition 3.
8. The proof of Theorem 7.

2 Preliminaries

We are given a CQ q, a set of inequalities I, and a database instance D. We will use
vars(q) to denote the variables in the body of query q and Dom to denote the active
domain of D. The set of variables in the head of q (i.e., the variables that appear
in the output of q) is denoted by head(q). If head(q) = ∅, q is called a Boolean
query, while if head(q) = vars(q), it is called a full query. For a CQ q, let qf

denote the full query where every variable in the body of q appears in the head of the
query q.

The set I contains inequalities of the form xi �= xj , where xi, xj ∈ vars(q) such
that they belong to two distinct relational atoms in the query. We do not consider
inequalities of the form xi �= c for some constant c, or of the form xi �= xj where
xi, xj only belong to the same relational atoms because these can be preprocessed by
scanning the database instance and filtering out the tuples that violate these inequali-
ties in time O(|I||D|). We will use k to denote the number of variables appearing in
I (k ≤ |vars(q)| < |q|).

Given q and I, the goal is to evaluate the query q with inequality I, called the aug-
mented query (q, I), on D. Intuitively, the query (q, I) augments q with additional
predicates, where for each inequality xi �= xj , we add a relational atom Iij (xi, xj) to
the query q, and add new relations Iij to D instantiated to tuples (a, b) ∈ Dom×Dom
such that a �= b.

Query Graph, Inequality Graph, and Augmented Graph Given a CQ q and a set
of inequalities I, we define three undirected graphs:

1. Query incidence graph (Gq): The query incidence graph or simply the query
graph, denoted by Gq , of a query q contains all the variables and the relational
atoms in the query as vertices. An edge exists between a variable x and an atom
S if and only if x appears in S.

2. Inequality graph (GI): The inequality graph contains the variables in vars(q)

as the set of vertices. GI adds an edge between xi, xj ∈ vars(q) if the inequality
xi �= xj belongs to I.

3. Augmented graph (Gq,I): The augmented graph Gq,I contains the variables
in vars(q) as the set of vertices too, and is the query incidence graph of the
augmented query (q, I).

Note that Gq,I includes the edges from Gq , and for every edge (xi, xj) ∈ GI , it
includes two edges (xi, Iij), (xj , Iij); examples can be found in Section 6.

Treewidth and Acyclicity of a Query We briefly review the definition of the
treewidth of a graph and a query.

Theory Comput Syst (2017) 61:2–30 7

Definition 1 (Treewidth) A tree decomposition [22] of a graph G(V, E) is a tree
T = (I, F), with a set X(u) ⊆ V associated with each vertex u ∈ I of the tree, such
that the following conditions are satisfied:

1. For each v ∈ V , there is a u ∈ I such that v ∈ X(u),
2. For all edges (v1, v2) ∈ E, there is a u ∈ I with v1, v2 ∈ X(u),
3. For each v ∈ V , the set {u ∈ I : v ∈ X(u)} induces a connected subtree of T .

The width of the tree decomposition T = (I, F) is maxu∈I |X(u)|−1. The treewidth
of G is the width of the tree decomposition of G having the minimum width.

Chekuri and Rajaraman defined the treewidth of a query q as the treewidth of
the query incidence graph Gq [6]. A query can be viewed as a hypergraph where
every hyperedge corresponds to an atom in the query and comprises the vari-
ables as vertices that belong to the relational atom. The GYO-reduction [11, 25]
of a query repeatedly removes ears from the query hypergraph (hyperedges hav-
ing at least one variable that does not belong to any other hyperedge and there
exists some other hyper edge that contains all other variables) until no further ears
exist.

Definition 2 A query is acyclic if its GYO-reduction is the empty hypergraph,
otherwise it is cyclic.

As an example, the query P k() = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1) is
acyclic: we can continue removing one of the two ears from the two ends (in
the first step, R1 or Rk) until the hypergraph becomes empty. On the other hand,
Ck() = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, x1) is a cyclic query (no ears in the query
hypergraph).

There is another notion of width of a query called querywidth qw defined in
terms of query decomposition such that the decomposition tree has relational atoms
from the query instead of variables [6]. The relation between the querywidth qw and
treewidth tw of a query is given by the inequality tw/a ≤ qw ≤ tw + 1, where a is
the maximum arity of an atom in q. A query is acyclic if and only if its querywidth
is 1; the treewidth of an acyclic query can be > 1 [6]. The notion of hypertreewidth
has been defined by Gottlob et al. in [10]. A query can be evaluated in poly-time
combined complexity if its treewidth, querywidth, or hypertreewidth is bounded [6,
9, 10, 16, 24].

3 Main Techniques

In this section, we present the main techniques used to prove Theorem 2 with the help
of a simple query q2 that computes the cross product of two relations and projects
onto the empty set. In particular, we consider the query (q2, I) with an arbitrary set
of inequalities I, where

q2() = R(x1, . . . , xm), S(y1, . . . , y�).

8 Theory Comput Syst (2017) 61:2–30

A naı̈ve way to evaluate the query (q2, I) is to iterate over all pairs of tuples from
R and S, and check if any such pair satisfies the inequalities in I. This algorithm
runs in time O(m�|R||S|). We will show instead how to evaluate (q2, I) in time
f (q2, I)(|R|+ |S|) for some function f that is independent of the relations R and S.

The key idea is to compress the information that we need from R to evaluate
the inequalities by computing a representation R′ of R such that the size of R′
only depends on I and not on R. Further, we must be able to compute R′ in time
O(f ′(I)|R|). Then, instead of iterating over the pairs of tuples from R, S, we can
iterate over the pairs from R′ and S, which can be done in time f ′′(q2, I)|S|. The
challenge is to show that such a representation R′ exists and that we can compute it
efficiently. Several of our ideas and techniques are related to the work of [8, 19].2

We now formalize the above intuition. Let X = {x1, · · · , xm} and Y =
{y1, · · · , y�}. Let H = GI denote the inequality graph; since q2 has only two rela-
tions, H is a bipartite graph on X and Y . If a tuple t from S satisfies the inequalities
in I when paired with at least one tuple in R, we say that t is H-accepted by R, and
it contributes to the answer of (q2, I). For a variable xi and a tuple t , let t[xi] denote
the value of the attribute of t that corresponds to variable xi .

Definition 3 (H-accepted Tuples) Let H = (X, Y, E) be a bipartite graph. We say
that a tuple t over Y is H-accepted by a relation R if there exists some tuple tR ∈ R

such that for every (xi, yj) ∈ E, we have tR[xi] �= t[yj].

Notice that (q2, I) is true if and only if there exists a tuple tS ∈ S that is H-
accepted by R.

Example 1 (Running Example) Let us define H0 = (X, Y, E) with X = {x1, x2},
Y = {y1, y2, y3} and E = {(x1, y1), (x1, y2), (x2, y2), (x2, y3)} (see Fig. 1a and
consider the instance for R as depicted in Fig. 1b. This setting will be used as our
running example.

Observe that the tuple t = (2, 1, 3) is H0-accepted by R. Indeed consider the
tuple t ′ = (3, 2) in R: it is easy to check that all inequalities are satisfied by t, t ′. In
contrast, the tuple (2, 1, 2) is not H0-accepted by R.

Definition 4 (H-Equivalence) Let H = (X, Y, E) be a bipartite graph. Two relations
R1, R2 of arity m = |X| are H-equivalent if for every tuple t of arity � = |Y |, the
tuple t is H-accepted by R1 if and only if t is H-accepted by R2.

2Monien in [19] defines the notion of q-representatives for families of sets. Given a family of sets F ,
where each set has p elements, F̂ ⊆ F is a q-representative if for every set T of size q, there exists some
set U ∈ F with U ∩ T = ∅ if and only if there exists a set Û ∈ F̂ such that Û ∩ T = ∅. Observe that a q-
representative is a special case of an H-equivalent relation: indeed, we can model the family F as a relation
RF of arity p (where we do not care about the order of the attributes), and define H as the full bipartite
graph with edge set [p]×[q]. Then, if we write EH(RF) back to a family of sets, it is a q-representative of
F . Our techniques also generalize the notion of minimum samples presented in [8], which corresponds to
H-forbidden tuples of a relation in the case where H = (X, Y,E) has |X| = |Y | and E(H) forms a perfect
matching between X and Y . Several of the definitions and algorithmic ideas were inspired by both [8, 19].

Theory Comput Syst (2017) 61:2–30 9

x1

x2

y1

y2

y3

(a) (b)

Fig. 1 The running example (Example 1) for Section 3

H-equivalent relations form an equivalence class comprising instances of the same
arity m. The main result in this section shows that for a given R, an H-equivalent
instance R′ ⊆ R of size independent of R can be efficiently constructed.

Theorem 3 LetH = (X, Y, E) be a bipartite graph (|Y | = �) and R be a relation of
arity m = |X|. Let φ(H) = �! ∏j∈[�] dH(yj), where dH(v) is the degree of a vertex
v inH. There exists an instance R′ ⊆ R such that:

1. R′ is H-equivalent with R.
2. |R′| ≤ e · φ(H), where e is Euler’s number.
3. R′ can be computed in time O(φ(H)|R|).

To describe how the algorithm that constructs R′ works, we need to introduce
another notion that describes the tuples of arity � that are not H-accepted by R. Let
⊥ be a value that does not appear in the active domain Dom.

Definition 5 (H-Forbidden Tuples) Let H = (X, Y, E) be a bipartite graph and R

be a relation of arity m = |X|. A tuple t over Y with values in Dom ∪ {⊥} is H-
forbidden for R if for every tuple tR ∈ R there exist yj ∈ Y and (xi, yj) ∈ E such
that t[yj] = tR[xi].

Example 2 (Continued) The reader can verify from Fig. 1 that tuples of the
form (1, 2, x), where x can be any value, are H0-forbidden for R. Further-
more, notice that the tuple (1, 2, ⊥) is also H0-forbidden (in our construction
(1, 2, ⊥) being H0-forbidden implies that any tuple of the form (1, 2, x) is H0-
forbidden).

Next we formalize the intuition of the above example. We say that a tuple t1
defined over Y subsumes another tuple t2 defined over Y if for any yj ∈ Y , either
t1[yj] = ⊥ or t1[yj] = t2[yj]. Observe that if t1 subsumes t2 and t1 is H-forbidden,
t2 must be H-forbidden as well. A tuple is minimallyH-forbidden if it is H-forbidden
and is not subsumed by any other H-forbidden tuple. In our example, (1, 2, 1) is sub-
sumed by (1, 2, ⊥), so it is not minimally H0-forbidden, but the tuple (1, 2, ⊥) is.
Lemma 1 stated below will be used to prove Lemma 3:

10 Theory Comput Syst (2017) 61:2–30

Lemma 1 Let H = (X, Y, E) be a bipartite graph, and R be a relation defined on
X. Then, the set of all minimally H-forbidden tuples of R has size at most φ(H) =
�! ∏j∈[�] dH(yj) and it can be computed in time O(φ(H)|R|).

To prove the above lemma, we present an algorithm that encodes all the minimally
H-forbidden tuples of R in a rooted tree TH(R). The tree has labels for both the
nodes and the edges. More precisely, the label L(v) of some node v is either a tuple
in R or a special symbol ⊥∗ (only the leaves can have label ⊥∗), while the label of an
edge of the tree is a pair of the form (yj , a), where yj ∈ Y and a ∈ Dom. The labels
of the edges are used to construct a set of H-forbidden tuples that includes the set of
all minimally H-forbidden tuples as follows:

For each leaf node v with label L(v) = ⊥∗, let (yj1 , aj1), . . . , (yjm, ajm) be the
edge labels in the order they appear from the root to the leaf. Then, the tuple tup(v)

defined on Y as follows is an H-forbidden tuple (but not necessarily minimally H-
forbidden):

tup(v)[yj] =
{

aj if j ∈ {j1, . . . , jm}
⊥ otherwise

Construction of TH(R). We construct TH(R) inductively by scanning through the
tuples of R in an arbitrary order. As we read the next tuple t from R, we need to
ensure that the H-forbidden tuples that have been so far encoded by the tree are not
H-accepted by t : we achieve this by expanding some of the leaves and adding new
edges and nodes to the tree. Therefore, after the algorithm has consumed a subset
R′′ ⊆ R, the partially constructed tree will be exactly TH(R′′).

For the base of the induction, where R′′ = ∅, we define TH(∅) as a tree that
contains a single node (the root r) with label L(r) = ⊥∗.

For the inductive step, let TH(R′′) be the current tree and let t ∈ R be the next
scanned tuple. The algorithm processes (in arbitrary order) all the leaf nodes v of the
tree with L(v) = ⊥∗. Let (yj1 , aj1), . . . , (yjp , ajp) be the edge labels in the order
they appear on the path from root r to v. We distinguish two cases (for tuple t and a
fixed leaf node v):

1. There exists j ∈ {j1, . . . , jp} and edge (xi, yj) ∈ E such that t[xi] = aj . In
this case, tup(v) will be H-forbidden in R′′ ∪ {t}; therefore, nothing needs to be
done for this v.

2. Otherwise (i.e., there is no such j), tup(v) is not a H-forbidden tuple for R′′ ∪
{t}. We set L(v) = t (therefore, we never reassign the label of a node that has
already been assigned to some tuple in R).

There are two cases:

(a) If p = �, we cannot expand further from v (and will not expand in the future
because now L(v) �= ⊥∗), since all yj -s have been already set.

(b) If p < �, we expand the tree at node v. For every edge (xi, yj) ∈ E such
that j /∈ {j1, . . . , jp}, we add a fresh node vi,j with L(vi,j) = ⊥∗ and an
edge (v, vi,j) with label (yj , t[xi]). Notice that the tuples tup(vi,j) will be
now H-forbidden in R′′ ∪ {t}.

Theory Comput Syst (2017) 61:2–30 11

The algorithm stops when either (a) all the tuples from R are scanned or (b) there
exists no leaf node with label ⊥∗.

Example 3 (Continued) We now illustrate the steps of the algorithm through the
running example. After reading the first tuple, t1 = (1, 1), the algorithm expands the
root node r to three children (for y1, y2, y3). It labels L(r) = (1, 1), the new edges
as (y1, 1), (y2, 1), (y3, 1), and the new three leaves as ⊥∗.

Suppose the second tuple t2 = (1, 2) is read next. First consider the leaf node with
label ⊥∗ that is reached from the root through the edge (y1, 1). At this point, the node
represents the tuple (1, ⊥, ⊥). Observe that we are in case (1) of the algorithm, and
so the node is not expanded (t2[x1] = 1 and m = 1 < 3 = �). Consider now the third
leaf node with label ⊥∗, reached through the edge (y3, 1). We are now in case (2),
and we have to expand the node. The available edges (since we have already assigned
a value to y3) are (x1, y1), (x1, y2), (x2, y2). Hence, the node is labeled (1, 2), and
expands into three children, one for each of the above edges. These edges are labeled
by (y1, 1), (y2, 1), (y2, 2) respectively; then the algorithm continues and at the end
the tree in Fig. 2 is obtained.

The H-forbidden tuples encoded by the tree are not necessarily minimally H-
forbidden. However, for every minimally H-forbidden tuple there exists a node in
the tree that encodes it. In the running example, we find only two minimally H0-
forbidden tuples for R: (1, 2, ⊥) and (2, 1, 2). Furthermore, the constructed tree is
not unique for R and depends on the order in which the tuples in R are scanned. The
following lemma sums up the properties of the tree construction, and directly implies
Lemma 1.

Lemma 2 TH(R) satisfies the following properties:

1. The number of leaves is at most φ(H) = �! ∏j∈[�] dH(yj).
2. Every leaf of TH(R) with label ⊥∗ encodes aH-forbidden tuple.
3. Every minimallyH-forbidden tuple is encoded by some leaf of the tree with label

⊥∗.

Proof We start by showing item (1). The first observation is that the depth of
the tree is at most �. Indeed, consider any path from the root to a leaf, and let

Fig. 2 The tree TH(R) of the running example. The diagram also presents how the H0-forbidden tuples
are encoded by the tree. We write yi : a to alternatively denote the edge label (yi , a)

12 Theory Comput Syst (2017) 61:2–30

(yj1 , aj1), . . . , (yjm, ajm) be the labels of the edges. By the construction in step (2),
all ja are pairwise disjoint, and so we can have at most � such labels in the path.
Notice additionally that each such path visits a subset of the nodes in Y in some order,
and maps each node it to one of its neighbors in X. This implies that the number of
leaves in TH(R) can be at most φ(H) = �! ∏j∈[�] dH(yj).

Item (2) is straightforward and follows by the fact that only the expansion step (2)
of the algorithm can assign the label ⊥∗ to a node.

Finally, we prove item (3). Let t be a minimally H-forbidden tuple. We will show
that the algorithm will produce t at some leaf of the tree. Our argument will trace t

along a path from the root of TH(R) to the appropriate leaf.
Consider the tuples of R in the order visited by the algorithm: t1, t2, We will

show the following inductive statement: for each tuple ta , there exists a leaf node va in
the tree with label ⊥∗ such that tup(va) is H-forbidden for {t1, . . . , ta} and subsumes
t . This statement suffices to prove (3), since at the point where a = |R| = m (i.e.,
all the tuples in R have been scanned), tup(va) must equal t (otherwise t is not
minimal), and also L(va) = ⊥∗.

The statement vacuously holds before no tuples from R have been scanned for
the root node that encodes (⊥, · · · , ⊥), and forms the basis of the induction. Now,
suppose that we are at some tuple ta and node va where the inductive statement
holds. Let ta+1 be the next tuple in the order. If the algorithm falls into case (1), then
va+1 = va and tup(va+1) = tup(va). Since tup(va) is H-forbidden for t1, . . . , ta
and subsumes t , it will be H-forbidden for t1, . . . , ta+1 as well, and still subsume t .
Further, the label of va+1 = va remains ⊥∗.

Now suppose we fall into case (2) and ta+1 is read. Let yj1 , . . . , yjp be the vari-
ables set so far in tup(va) where va is labeled ⊥∗. First note that we cannot fall into
case (2a), i.e. p < �. Indeed, if p = � and ta+1 satisfies all inequalities with tup(va),
then tup(va) is not H-forbidden. Since all the positions of tup(va) have been set
and tup(va) subsumes t , it must hold that tup(va) = t . It follows that t is not H-
forbidden, which contradicts the fact that t remains H-forbidden after all tuples in R

are read.
Therefore, we are in case (2b), and for all s ∈ [p], there exists some xi ∈

E(H), ta+1[xi] �= tup(va)[yjb
]. When we add ta+1, t remains H-forbidden. Fur-

ther, tup(va) subsumes t . Therefore there must be some j /∈ {j1, . . . , jm} and
(xi, yj) ∈ E(H) such that ta+1[xi] = t[yj] = tup(va)[yj] �= ⊥. By construction,
the algorithm will choose (xi, yj) at step (2) to expand va and create a child va+1 that
connects with an edge (yj , t[yj]). Note that, v(ta+1) still subsumes t , is H-forbidden
for the tuples t1, · · · , ta+1, and has label ⊥∗, which proves the induction hypothesis
for ta+1.

For our running example, φ(H0) = 3!·(1·2·1) = 12, whereas the tree TH0(R) has
only 10 leaves. We should note here that the bound φ(H) is tight, i.e. there exists an
instance for which the number of minimally H-forbidden tuples is exactly φ(H). For
example, for H0 consider the instance {(1, 2), (3, 4), (5, 6)}. The reader can check
that the resulting tree has 12 leaves with label ⊥∗, and that every leaf leads to a
different minimally H-forbidden tuple.

Theory Comput Syst (2017) 61:2–30 13

We now discuss how we can use the tree TH(R) to find a small H-equivalent
relation to R. It turns out that the connection is immediate: it suffices to collect the
labels of all the nodes (not only leaves) of the tree TH(R) that are not ⊥∗. More
formally:

EH(R) = {L(v) | v ∈ TH(R), L(v) �= ⊥∗} (1)

We can now show the following result, which completes the proof of Lemma 3:

Lemma 3 EH(R) is H-equivalent to R and has size |EH(R)| ≤ e · φ(H).

Proof The proof of H-equivalence is based on the observation that if TH(R) =
TH(R′), then R, R′ must be H-equivalent. Indeed, both trees will have the same min-
imally H-forbidden tuples, and therefore the set of tuples that are H-accepted will be
same.

To see that TH(R) = TH(EH(R)), consider R and suppose that we remove some
tuple t that does not appear at any label of the tree (and therefore the resulting instance
equals EH(R)). If we keep the same order of scanned tuples when constructing both
trees, the exact same tree will be produced (since t will not expand any node or add
any label).

To prove the size bound, we have to give a bound on the number of nodes in
the tree, |V (TH(R))|. For every possible mapping of nodes yj to one of its neigh-
bors in H (there are

∏
j∈[�] dH(yj) such mappings), consider the subtree of TH(R)

that contains only the paths from root to leaves where all the edges agree with
the mapping (remember that each node creates a child corresponding to an edge
(xi, yj) of H); we will first count the nodes of such a subtree. This is because the
root node can have at most � children corresponding to ≤ � edges in the map-
ping. Each child of root can have at most � − 1 children as one of the edges in the
mapping has been used in the first level. Therefore, this subtree will be of size at
most

� + �(� − 1) + · · · + �! =
�∑

i=0

�!
i! = �!

�∑

i=0

1

i! ≤ e · �!

Since the union of these subtrees will cover all the nodes of TH(R), we obtain that
the e · φ(H) is an upper bound for the size of the tree.

Example 4 (Continued) For our running example, the small H0-equivalent relation
will be: EH0(R) = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (5, 2)}. In other words,
the tuples (1, 8), (2, 2), (2, 4), (10, 2) are redundant and can be removed without
affecting the answer to the query (q2, I).

Although the set of minimally H-forbidden tuples is the same irrespective of
the order by which the algorithm scans the tuples, the relation EH(R) depends on
this order. It is an open problem to find the smallest possible H-equivalent relation
for R.

14 Theory Comput Syst (2017) 61:2–30

4 Query Plans for Inequalities

In this section, we use the techniques presented in the previous section as build-
ing blocks and prove Theorem 2. Let Pq be any SPJ query plan that computes
a CQ q (without inequalities) on a database instance D in time T (|q|, |D|). We
will show how to transform Pq into a plan Pq,I that computes (q, I) in time
g(q, I) · max(T (|q|, |D|). Without loss of generality, we assume that all the relation
names and attributes in the base (input) relations and derived relations (temporary
relations that are created at intermediate steps in the query plan) are distinct. We
also assume, as we discussed in Section 2, that there are no inequalities of the form
x �= c, or x �= y where x, y are in the same atom. Such inequalities can be evaluated
as selection operators at the bottom of the query plan after scanning each relation,
and will incur at most an additive O(|I||D|) factor in the running time of the query.
Thus, we can always add these selections operators after we have transformed the
query plan. Our running example for this section is given below:

Example 5 Consider the query (q0, I), and the plan Pq0 that computes q0:

q0(w) = R(x, y, ‘a‘), S(y, z), T (z, w), I = {x �= z, y �= w, x �= w}
Pq0 = �D(σE=‘a‘(�C,E(R(A, B, E) ��B=B ′ S(B ′, C))) ��C=C′ T (C′, D))

The query plan Pq0 is depicted in Fig. 3.

Clearly, this plan by itself does not work for (q0, I) as it is losing information
that is essential to evaluate the inequalities. For example, the attribute A is being
projected out and it is used later in the inequality x �= w with the attribute D of T . To
overcome this problem while keeping the same structure of the plan, we define a new
projection operator that allows us to perform valid algebraic transformations even in
the presence of inequalities. Let attR be the set of attributes that appear in a base or
derived relation R; a query plan or sub-plan P is a derived relation with attributes
attP . If X ⊆ attR, let X̄R = attR \ X.

Fig. 3 The SPJ query plan Pq0 for Example 5, and the transformation to the plan Pq0,�

Theory Comput Syst (2017) 61:2–30 15

Definition 6 (H-Projection) Let R be a base or a derived relation in P . Let X ⊆ attR
and H = (X̄R, attP \ attR, E) be a bipartite graph. Then, the H-projection of R on
X, denoted �H

X (R), is defined as

�H
X (R) =

⋃

α∈�X(R)

EH(σX=α(R)) (2)

where EH denotes an H-equivalent subrelation as defined and constructed in (1).

The intuition behind this definition is as follows. Suppose we want to apply a
projection �X on a base or derived relation R. In the presence of inequalities, it
might be the case that some of the projected-out attributes, which are captured by
X̄R , must be later compared with attributes that appear later in the query plan (and
are in attP \ attR). These comparisons are captured by the bipartite graph H: each
edge corresponds to an inequality that has to be evaluated before we output the final
answer. In order to be able to evaluate the inequalities, we cannot project out the
attributes as we normally do. Instead, the operator �H

X first groups the tuples from
R according to the values of the X-attributes, and then for every projected value
a ∈ �X(R) computes a small H-equivalent subrelation EH(σX=α(R)). This way, we
keep all the necessary information to correctly evaluate the inequalities.

Observation 4 The H-projection of a relation R on X satisfies the following
properties:

1. �X(R) = �X(�H
X (R))

2. |�H
X (R)| ≤ e · φ(H) · |�X(R)| (ref. Lemma 3)

We next present the algorithm that transforms the plan Pq to a plan Pq,I that
incorporates the inequalities.

First step We first create an equivalent query plan Pq,� by pulling all the projections
in Pq to the top of the plan. The equivalence of Pq and Pq,� is maintained by the
following standard algebraic rules regarding projections:

(Rule-1) Absorption: If X ⊆ Y , then �X(R) = �X(�Y (R)).
(Rule-2) Distribution: If X1 ⊆ attR1 and X2 = attR2, then �X1∪X2(R1 × R2) =

�X1(R1) × R2.
(Rule-3) Commutativity with Selection: If the selection condition θ is over a

subset of X, then σθ (�X(R)) = �X(σθ (R)).

Figure 3 depicts how each rule is applied in our running example to transform
the initial query plan Pq0 to Pq0,�, where the only projection occurs in the top of
the query plan. Observe that to distribute a projection over a join R1 ��A1=A2 R2
(and not a cartesian product), we can write it as σA1=A2(R1 × R2), use both (Rule-2)
and (Rule-3) to push the projection, and then write it back in the form as R1 ��A1=A2

R2.
The plan Pq,� will be of the form Pq,� = �X(P0), where P0 is a query plan that

contains only selections and joins. The key observation is that the plan �X(σI(P0))

16 Theory Comput Syst (2017) 61:2–30

correctly computes (q, I), since it applies the inequalities before projecting out any
attributes.3 However, the running time is not comparable with that of the original
plan Pq since the structures of the plans Pq and �X(σI(P0)) are very different.
To achieve comparable running time, we modify �X(σI(P0)) by applying the cor-
responding rules of (Rule-1), (Rule-2), (Rule-3) for H-projection in the reverse
order.

Second step To convert projections to H-projections, first, we replace �X with
�

H0
X , where H0 = (attP0 \ X, ∅, ∅). Notice that �

H0
X is essentially like �X, but

instead of removing the attributes that are not in X, the operator keeps an arbitrary
witness. Thus, if we compute �

H0
X (σI(P0)), we not only get all tuples t in (q, I),

but for every such tuple we obtain a tuple t ′ from (qf , I) such that t = t ′[X]. For our
running example, X = {D}, and therefore, H0 = ({A, B, B ′, C, C′, E}, ∅, ∅) (see
the rightmost plan in Fig. 4).

Third step We next present the rules for H-projections to convert �
H0
X (σI(P0)) to

the desired plan Pq,I . To show that the rules are algebraically correct, we unfortu-
nately cannot use the standard notion of plan equivalence, since an H-projection does
not output a unique relation. Instead, we need to introduce a weaker version of plan
equivalence.

Definition 7 (Plan Equivalence) Two plans P1,P2 are equivalent under �H
X ,

denoted P1 ≡H
X P2, if for every tuple α, EH(σX=α(P1)) and EH(σX=α(P2)) are

H-equivalent.

In other words, we do not need to have the same values of the attributes that are
being projected out by �X in the small sub-relations EH. Notice of course that if two
plans P1,P2 are equivalent under �H

X , then �X(P1) = �X(P2), i.e. after we apply
the actual projection on X the answers will be exactly the same.

We write I[X1, X2] ⊆ I to denote the inequalities between attributes in subsets
X1 and X2. For convenience, we also write I[X,X] = I[X]. We use E[X1, X2] in
a similar fashion, where E is the set of edges in a bipartite graph. Let A = attP0. We
apply the transformation rules for a sub-plan that is of the form �H

X (σI(S)), where
I is defined on attS and H = (X̄S,A, E).4 The rules are:

(Rule-1’) If X ⊆ Y and H′ = (Ȳ S,A, E[Ȳ S,A]), then

�H
X (σI(S)) ≡H

X �H
X (�H′

Y (σI(S)))

This rule corresponds to the absorption rule. Intuitively, it says that we can split
an H-projection on X by first applying an H′-projection on Y , where the inequalities
in H′ are the ones that do not include any attributes in Y . In the running example,

3From here on we let I denote inequalities on attributes and not variables.
4For the sake of simplicity, we do not write the bipartite graph as H = (X̄S,A \ attS,E). However, the
transformation rules ensure that the edges E in the bipartite graph are always between X̄S and A \ attS.

Theory Comput Syst (2017) 61:2–30 17

we have X = {D}, Y = {C, C′, D, E}, and attS = A = {A, B, B ′, C, C′, D, E}.
The new bipartite graph for Rule-1’ in Fig. 4 (corresponding to Rule-1 in Fig. 3) is
H1 = ({A, B, B ′},A,∅).

(Rule-2’). Let S = R1 × R2, and X = X1 ∪ Z2, where X1 ⊆ attR1 = Z1 and
Z2 = attR2. If we define H′ = (Z1 \ X1, A, E[Z1 \ X1,A] ∪ I[Z1 \ X1, Z2]), then

�H
X1∪Z2

(σI(R1 × R2)) ≡H
X σI\I[Z1](�

H′
X1

(σI[Z1](R1)) × R2)

This rule corresponds to the distribution rule. To explain this rule in detail, consider
a simple example: suppose we have the relations R1(A, B) (so Z1 = {A, B}) and
R2(C) (Z2 = {C}), the graph H contains the inequality A �= D. The task is to push
the projection �H

A,C(σB �=C,A�=B(R1 × R2)) inside the join. The inequality A �= B

includes attributes only in R1, so we can evaluate it before the projection �A(R1).
On the other hand, the inequality B �= C involves C, so when we apply the projection
on R1, we have to add to H the inequality B �= C. The transformed plan will become
σB �=C(�H′

A (σA�=B(R1)) × R2), where H′ includes now A �= C, A �= D.
In the running example, we have X1 = {C, E} ⊆ {A, B, B ′, C, E} = Z1 and

Z2 = {C′, D}. Since E(H1) = ∅, to construct the edge set of the new bipartite
graph H2, we need to find the inequalities that have one attribute in Z1 \ X1 =
{A, B, B ′} and the other in Z2 = {C′, D}: these are A �= D and B �= D. Hence,
H2 = ({A, B, B ′},A, {(A, D), (B, D)}), and the application of the rule is depicted
in Fig. 4.

(Rule-3’). If θ is defined over a subset of X, and S = σθ (R):

�H
X (σI(σθ (R))) ≡H

X σθ (�
H
X (σI(R)))

This rule corresponds to the commutativity of selection rule. It is essentially the
same as the standard rule for pushing selections inside projections. In the running

Fig. 4 The reverse application of rules for Example 5. The bipartite graphs defined have edge sets
E(H0) = ∅, E(H1) = ∅ and E(H2) = {(A,D), (B,D)}

18 Theory Comput Syst (2017) 61:2–30

example, we move the selection operator σE=‘a‘ before the projection operator �
H2
C,E

as the last step of the transformation.

Lemma 4 The three rules (Rule-1’), (Rule-2’), (Rule-3’) preserve the equivalence of
the plans under �H

X .

Proof We show the equivalence for each rule. For convenience, we will use the nota-
tion I |= t to mean that the inequalities in the set I are satisfied by the values of the
tuple t .

(Rule-1’). Denote S′ = σI(S). It suffices to show that for every tuple α, E1 =
EH(σX=α(S′)) and E2 = EH(σX=α(�H′

Y (S′))) are H-equivalent. Let us fix some
X = α.

The one direction is based on the observation that �H′
Y (S′) ⊆ S′. Hence,

σX=α(�H′
Y (S′)) ⊆ σX=α(S′), which implies that if a tuple is H-accepted by E2, it

is accepted by E1 as well.
For the other direction, suppose that t is H-accepted by E1. Then, there

exists some s ∈ σX=α(S′) such that E |= s ◦ t .5 Since Ȳ S ⊆ X̄S ,
E[Ȳ S, A] |= s ◦ t and t must be H′-accepted by σY=s[Y](σX=α(S′)), and con-
sequently by EH′(σY=s[Y](σX=α(S′))) as well. Then, there exists some s′ ∈
EH′(σY=s[Y](σX=α(S′))) such that E[Ȳ S, A] |= t ◦ s′. However, since s′[Y] =
s[Y], we must also have that E |= t ◦ s ′. Since s′ ∈ �H′

Y (σX=α(S′)), we conclude
that t is H-accepted by E2.

(Rule-2’). Denote R′
1 = σI[Z1](R1) and I1 = I \ I[Z1]. It suffices to show that

for every tuple α, the following are H-equivalent:

E1 = EH(σX=α(σI ′(R′
1 × R2))),

E2 = EH(σX=α(σI ′(�H1
X1

(R′
1) × R2)))

The one direction of the equivalence is based on the fact that �
H1
X1

(R′
1) ⊆ R′

1.
The other direction is more involved.

Suppose that t is H-accepted by E1. Then, there exists some s ∈ R′
1 × R2

such that E, I ′ |= s ◦ t and s[X] = α. Now, consider the tuple t ◦ s[Z2]. The
crucial observation is that t ◦ s[Z2] is H1-accepted by σX1=α[X1](R′

1), and thus by
EH1(σX1=α[X1](R′

1)) as well. Then, there exists some s1 ∈ EH1(σX1=α[X1](R′
1))

such that E |= t ◦ s1 ◦ s[Z2]. Finally, observe that the tuple s′ = s1 ◦ s[Z2] belongs
in �

H1
X1

(R′
1) × R2, has s′[X] = α, and also satisfies I ′. This implies that t is

H-accepted by E2.
(Rule-3’). This is immediate, since the selection θ is applied only on the attributes

in X, which are not projected out.

5s ◦ t denotes the concatenation of s, t .

Theory Comput Syst (2017) 61:2–30 19

After applying the above transformations in the reverse order, we obtain a plan
Pq,I where each relational operator is in the same position in the query plan as in
the original plan Pq , plus some additional inequality conditions. More formally, the
following lemma holds:

Lemma 5 Let Pq be an SPJ plan for q. For a set of inequalities I, the transformed
plan Pq,I has the following properties:

1. If Pq,� = �X(P0), the plan �X(Pq,I) computes (q, I) (after projecting out the
attributes that served as witness from Pq,I).

2. For every �X operator in Pq , there exists a corresponding �H
X operator in Pq,I

for some appropriately constructedH.
3. Every derived relation R in Pq,I has size at most e · maxH{φ(H)} · |R′|, where

R′ is the corresponding derived relation in Pq .
4. If T (|q|, |D|) is the time to evaluate Pq , the time to evaluate Pq,I increases by

a factor of at most (e · maxH{φ(H)})2.

Theorem 2 directly follows from the above lemma. To prove the bound on the
running time, we use the fact that each operator (selection, projection or join) can be
implemented in at most quadratic time in the size of the input. Additionally, notice
that, if k is the vertex size of the inequality graph, then maxH{φ(H)} ≤ k!kk . Hence,
the running time can increase at most by a factor of 2O(k log k) when inequalities are
added to the query. In our running example, φ(H0) = 1, φ(H0) = 1 and φ(H2) = 2,
hence the resulting intermediate relations will be at most 2e times larger than the
ones in Pq0 .

The following query with inequalities is an example where our algorithm gives
much better running time than the color-coding-based or treewidth-based techniques
described in the subsequent sections.

Example 6 Consider P k() = R1(x1, x2), R2(x2, x3), · · · , Rk(xk, xk+1) with
inequalities I = {xi �= xi+2 | i ∈ [k − 1]}. Let P be the SPJ plan that computes
this acyclic query in time O(k|D|) by performing joins from left to right and pro-
jecting out the attributes as soon as they join. Then, the plan PI that is constructed
has constant maxH{φ(H)}; thus, (P k, I) can be evaluated in time O(k|D|) as
well.

Computing CQs with non-SPJ Plans So far we compared the running time of
queries with inequalities with SPJ plans that compute the query without the inequal-
ities. However, optimal algorithms that compute CQs may not use SPJ plans, as the
recent worst-case optimal algorithms in [20, 23] show. These algorithms apply to con-
junctive queries without projections, where any inequality can be applied at the end
without affecting the asymptotic running time. However, there are cases where non-
standard algorithms for Boolean CQs run faster than SPJ algorithms. For example,
the cycle query

C2k() = R(x1, x2), R(x2, x3), . . . , R(x2k, x1)

20 Theory Comput Syst (2017) 61:2–30

for any k ≥ 1 can be computed in time O(N2−1/k), where N = |R|. We can show
that we can apply our techniques in this case as well, even though it remains open
whether we can use them for any black-box algorithm.

We first present the algorithm that computes C2k .

Theorem 5 C2k can be computed in time O(N2−1/k), where N = |R|.

Proof Let δ be some threshold parameter. We say that a value a is a heavy hitter if
the degree |σX=aR(X, Y)| ≥ δ, otherwise it is light. The algorithm distinguishes two
cases.

First, we compute all the 2k-cycles that contain some heavy hitter value. We have
at most N/δ such values. For each such value, we can compute

C
(a)
2k () = R(a, x2), R(x2, x3), . . . , R(x2k, a)

Observe that this is an acyclic query now that a is a fixed value, so we can compute
this query in time O(kN). Hence, to compute all possible cycles in this case we need
O(kN2/δ) time.

Second, we compute whether there exists a cycle C2k that uses only light values.
To do this, let R′ be the subset of R that contains only the light values. The maximum
degree is δ, so the queries

q1(x1, xk) = R(x1, x2), . . . , R(xk−1, xk)

q2(xk, x1) = R(xk, xk+1), . . . , R(x2k, x1)

each contain at most Nδk−1 answers, which we can compute in time O(kNδk−1) by
performing consecutive joins. However, |q1|, |q2| have size at most N , and we can
compute their intersection in time O(N log N). So the total running time for this case
is O(Nδk−1).

To balance the two cases, we must have N2/δ = Nδk−1 or δ = N1/k .

We can combine the above algorithm with our technique as follows. Suppose the
query now is (C2k, I) for some set of inequalities I. Observe that the first case is
easy to handle, since we know how to compute C

(a)
2k in time O(kN ×maxH(φ(H))2),

where φ(H) depends only on the inequality structure. For the second case, instead of
computing q1, q2, we consider the full queries

q
f

1 (x1, x2, . . . , xk) = R(x1, x2), . . . , R(xk−1, xk)

q
f

2 (xk, . . . , x2k, x1) = R(xk, xk+1), . . . , R(x2k, x1)

and compute (q
f

1 , I1), (q
f

2 , I2), where I1 are the inequalities defined only between
the variables of q1 (and similarly for I2). Since these queries have size at most Nδk−1,
we can compute the full answers and apply the inequalities at the end. To compute
the intersection between q1, q2, let I12 = I \(I1 ∪I2). We then compute �

H1
x1,xk

(q
f

1),

where H1 = ({x2, . . . , xk−1}, {xk+1, . . . , x2k}, I12), and similarly �
H2
x1,xk

(q
f

2) with
a symmetrically defined H2. The resulting projections have size at most N · φ(Hi)

Theory Comput Syst (2017) 61:2–30 21

for i = 1, 2, so we can then compute their intersection in time O(N log N) and then
apply the inequalities in I12.

5 Color-coding Technique and Generalization of Theorem 1

In this section, we will review the color-coding technique from [4] and use it to
generalize Theorem 1 for arbitrary CQs with inequalities (i.e., not necessarily acyclic
queries).6

Theorem 6 Let q be a CQ that can be evaluated in time T (|q|, |D|). Then, (q, I)

can be computed in time 2O(k log k) · log(|D|) · T (|q|, |D|) where k is the number of
variables in I.

First, we state the original randomized color-coding technique to describe the intu-
ition. Let h be a hash function that maps each value of the active domain Dom of
the instance D to a random color. The basic idea of the color-coding technique is
to randomly color each value of the active domain Dom by using h, use these colors
to check the inequality constraints, and use the actual values of the attributes of the
tuples for checking the equality constraints.

Definition 8 Let t ∈ qf (D). We say that t satisfies the inequalities I, denoted by
t |= I, if for each xi �= xj in I, t[xi] �= t[xj]. We say that t satisfies the inequalities
I with respect to the hash function h, denoted by t |=h I, if for each such inequaity
h(t[xi]) �= h(t[xj]).

Recall that k is the number of variables that appear in I. Let h be a perfectly
random hash function h : Dom → [p]7 (where p ≥ k). For any t ∈ qf (D) if t

satisfies I, then with high probability it also satisfies I with respect to h, i.e.,

Prh[t |=h I | t |= I] ≥ p(p − 1) · · · (p − k + 1)

pk
≥ e−2

∑k−1
i=1 (i/p) ≥ e−k

where we used the fact that 1 − x ≥ e−2x for x ≤ 1
2 . Therefore, by repeating the

experiment 2O(k) times we can evaluate a Boolean query with constant probability.
This process can be derandomized leading to a deterministic algorithm (for eval-

uating any CQ, not necessarily Boolean) by selecting h from a family F of k-perfect
hash functions. A k-perfect family guarantees that for every tuple of arity at most
k (with values from the domain Dom), there will be some h ∈ F such that for
all i, j ∈ [k], if t[i] �= t[j], then h(t[i]) �= h(t[j]) (and thus if t |= I, then
t |=h I) It is known (see [4]) that we can construct a k-perfect family of size

6The log2(|D|) factor in Theorem 1 is reduced to log(|D|) in Theorem 6, but this is because one log factor
was due to sorting the relations in the acyclic query, and now this hidden in the term T (|q|, |D|).
7We use [p] to denote the set {1, . . . , p}.

22 Theory Comput Syst (2017) 61:2–30

|F | = 2O(k) log(|Dom|) = 2O(k) log |D| 8, and evaluating each hash value takes only
O(1) time.

A coloring c of the vertices of the inequality graph GI with k colors is called a
valid k-coloring, if for each xi �= xj we have that ci �= cj where ci denotes the
color of variable xi under c. Let C(GI) denote all the valid colorings of GI . For
each such coloring c and any given hash function h : Dom → [k], we can define
a subinstance D[c, h] ⊆ D such that for each relation R, RD[c,h] = {t ∈ RD |
∀xi ∈ vars(R), h(t[xi]) = ci}. In other words, the subinstance D[c, h] picks only
the tuples that under the hash function h agree with the coloring c of the inequality
graph. Then the algorithm can be stated as follows:

– Deterministic Algorithm: For every hash function h : Dom → [k] in a k-perfect
hash family F , for every valid k-coloring c ∈ C(GI) of the variables, evaluate
the query q on the sub-instance D[c, h]. Output ⋃h∈F

⋃
c∈C(GI) q(D[c, h]).

Proof of Theorem 6 Suppose

q(h)(D) = {t[head(q)] | t ∈ qf (D) |=h I}
Then the union

⋃
h∈F q(h)(D) produces the result of the query (this is because for

any tuple t ∈ qf (D), there exists a hash function h ∈ F that satisfies all the inequal-
ities in I). In the rest of this subsection, we will show how to compute q(h)(D) for
a fixed hash function h : Dom → [p], p ≥ k, using the coloring technique in time
bounded by 2O(k log k)T (|q|, |D|).

Let C be a valid p-coloring of the vertices of the inequality graph GI , such that
whenever xi �= xj , we have that ci �= cj where ci denotes the color of variable xi

under c. For each such coloring, we can define a subinstance D[C, h] ⊆ D such that
for each relation R,

RD[C,h] = {t ∈ RD | ∀xi ∈ vars(R), h(t[xi]) = ci}
In other words, the subinstance D[C, h] picks only the tuples that under the hash

function h agree with the coloring C of the inequality graph.

Lemma 6 Let C(GI) denote all the valid colorings of GI . Then,

q(h)(D) =
⋃

C∈C(GI)

q(D[C, h])

Proof Let t ∈ qf (D) |=h I. Let C be the coloring such that for every xi ∈ V (GI),
we set ci = h(t[xi]). We will show that C is a valid coloring of GI . Indeed, if
xi �= xj ∈ I, it must be that h(t[xi]) �= h([tj]) (Since t |=h I) and hence ci �= cj .
Thus, we have that t[head(q)] ∈ q(D[C, h]).

For the other direction, let t ∈ qf (D[C, h]) for a valid coloring C. For any
inequality xi �= xj , we will have h(t[xi]) = ci �= cj = h(t[xj]), and hence
t |=h I.

8Assuming Dom includes only the attributes that appear as variables in the query q, |Dom| ≤ |D||q|.

Theory Comput Syst (2017) 61:2–30 23

The algorithm now iterates over all hash functions h ∈ F , and all valid colorings
of GI with p colors, and for each combination computes q(D[c], h). The output
result is: ⋃

h∈F ,C∈C(GI)

q(D[C, h])

The running time is O(|F | · |C(GI)| · T (q, |D|)). As we discussed before |F | ≤
2O(p) log |D| and |C(GI)| ≤ kp. Theorem 6 follows by choosing p = k = |V (GI)|
(the smallest possible value of p).

Comparison of Theorem 2 with Theorem 6 The factors dependent on the query in
these two theorems (g(q, I) in Theorem 2 and f (k) in Theorem 6) are both bounded
by 2O(k log k). However, our technique outperforms the color-coding technique in sev-
eral respects. First, the randomized color-coding technique is simple and elegant, but
is unsuitable to implement in a database system that typically aims to find determin-
istic answers. Further, apart from the additional log(|D|) factor, the derandomized
color-coding technique demands the construction of a different k-perfect hash fam-
ily for every database instance and every query issued on the instance (since the hash
family construction depends on the active domain and the number of variables in
the query), and therefore may not be efficient for practical purposes. Our algorithm
requires no preprocessing and can be applied in a database system by maintaining
the same query plan and using a more sophisticated projection operation.

More importantly, the color coding technique is oblivious of the combined struc-
ture of the query and the inequalities (as it was originally used for the complete
inequality graph), and has exponential dependency in k even for very simple inequal-
ity patterns. In particular, our algorithm can compute certain queries with polynomial
combined complexity, whereas color-coding leads to exponential running time in k.
As an example, consider the path query P k , together with the inequalities I1 =
{xi �= xi+2 : i ∈ [k − 1]}. The color-coding-based algorithm has a running time of
2O(k log k)|D| log |D|. However, as discussed in Section 4, we can compute this query
in time O(k|D|), thus the exponential dependence on k is eliminated.

6 CQs and Inequalities with Polynomial Combined Complexity

In this section, we investigate classes of queries and inequalities that entail a poly-
time combined complexity for (q, I) in terms of the treewidths of query graph Gq ,
inequality graph GI , and augmented graph Gq,I . If the augmented graph Gq,I has
bounded treewidth, then (q, I) can be answered in poly-time combined complexity
[6, 24]. We give examples of such q and I below:

Example 7 Consider the path query P k(), which is acyclic, and consider the
following inequality patterns (see Fig. 5):

1. (P k, I1) where I1 = {xi �= xi+2 : i ∈ [k − 1]} has treewidth 2. A tree-
decomposition with treewidth 2 (ie, maximum node in the tree has size 3) is
{xi, xi+1, xi+2} — {xi+1, xi+2, xi+3} — · · · .

24 Theory Comput Syst (2017) 61:2–30

2. (P k, I2) where I2 = {xi �= x
i+ k

2
: i ∈ [k+1

2]} has treewidth 3 (k is odd):

The incidence graph without the edge (x k
2
, x k

2
+ 1) has the structure of a

k
2 × 2 grid and therefore has treewidth 2 (see Fig. 5b). We can simply add the
node x k

2
to all nodes in this tree-decomposition to have a decomposition with

treewidth 3.
3. (P k, I3) where I3 = {xi �= xk−i+1 : i ∈ [k+1

2]} has treewidth 2 (k is odd):
A tree-decomposition with treewidth 3 can be obtained by going back and forth
along the inequality (dotted) edges: {xi+1, xi, xk−i+1} — {xk−i+1, xk−i , xi+1} —
· · · . For example, in Fig. 5c the decomposition can be {x2, x1, x8} — {x8, x7, x2}
— {x3, x2, x7} — {x7, x6, x3} — {x4, x3, x6} — {x6, x5, x4}.

However, for certain inputs our algorithm in Section 4 can outperform the
treewidth-based techniques since it considers the inequality structure more care-
fully. For instance, even though the augmented graph of (P k, I1) has treewidth
2 (see Fig. 5a), the techniques of [24] will give an algorithm with running time
O(poly(k)|D|2), whereas the algorithm in Section 4 gives a running time of
O(k|D|).

Indeed, the treewidth of Gq,I is at least as large as the treewidth of Gq and
GI . As mentioned earlier, when GI is the complete graph on k + 1 variables (with
treewidth = k + 1), answering (P k, I) is as hard as finding if a graph on k + 1 ver-
tices has a Hamiltonian path, and therefore is NP-hard in k. Interestingly, even when
both Gq and GI have bounded treewidths, Gq,I may have unbounded treewidth as
illustrated by the following example:

Example 8 Consider (P k, I4) (see Fig. 5d), where k + 1 = p2 for some p. Algebrai-
cally, we can write I4 as: I4 = {xi �= x�i/p�+1+2p−(i mod p)|i = 1, . . . ,

p(p − 1)}. The edges for P k are depicted in the figure as an alternating path on
the grid with solid edges, whereas the remaining edges are dotted and correspond to

(a) (b) (c) (d)

Fig. 5 Augmented graphs for Example 7 (k = 7) and Example 8 (k = 8). The solid and dotted edges
come from the query and inequalities respectively; the blue squares denote variables, and red circles denote
(unnamed) relational atoms: (a) (P 7,I1), (b) (P 7,I2), (c) (P 7,I3), (d) (P 7,I4)

Theory Comput Syst (2017) 61:2–30 25

the inequalities. Here both GP k
and GI4 have treewidth 1, but GP k,I4 has treewidth

�(
√

k).

However, this does not show that evaluation of the query (P k, I4) is NP-hard in
k, which we prove below by a reduction from the list coloring problem:

Definition 9 (List Coloring) Given an undirected graph G = (V , E), and a list of
admissible colors L(v) for each vertex v ∈ V , list coloring asks whether there exists
a coloring c(v) ∈ L(v) for each vertex v such that the adjacent vertices in G have
different colors.

The list coloring problem generalizes the coloring problem, and therefore is NP-
hard. List coloring is NP-hard even on grid graphs with 4 colors and where 2 ≤
|L(v)| ≤ 3 for each vertex v [7]; we show NP-hardness for (P k, I4) by a reduction
from list coloring on grids.

Proposition 1 The combined complexity of evaluating (P k, I4) is NP-hard, where
both the query P k and the inequality graph G are acyclic (treewidth 1).

Proof We reduce from list coloring on grid graphs, which is known to be
NP-complete with c = 4 colors and where 2 ≤ |L(v)| ≤ 3 for each vertex v [7].

Given an instance of the list coloring problem where the graph G is a p × p grid-
graph, we create an instance of P k, I4 as shown in Fig. 5d, where k + 1 = p2. We
denote by xi both the vertices in G as welll as the variables in P k . For each i ∈ [k],
we create an instance

Ri(xi, xi+1) = {(a, b) : a �= b and a, b ∈ L(xi) × L(xj)}
The inequalities I4 are as shown in the figure: xi �= xj . Note that each vertex v in the
grid graph G appears in one of the relations so its domain in the query is bounded by
L(v).

Suppose the list coloring instance has a valid coloring, i.e., every vertex v in G

can be colored c[v] ∈ L(v) such that for each edge (u, v), c[u] �= c[v]. This gives
an yes-instance to the query (P k, I4). Similarly, if the query has a yes instance, that
corresponds to a yes-instance of the list coloring problem.

In fact, the above proposition can be generalized as follows: if the graph Gq,I

is NP-hard for list coloring for a query q where each relation has arity 2, then
evaluation of the query (q, I) is also NP-hard in the size of the query.

On the contrary, (q, I) may not be hard in terms of combined complexity if the
treewidth of Gq,I is unbounded, which we also show with the help of the list coloring
problem. Consider the queries Fk() = R1(x1), R2(x2), . . . , Rk(xk). Given inequal-
ities I, the evaluation of (F k, I) is equivalent to the list coloring problem on the
graph GI when the available colors for each vertex xi are the tuples in Ri(xi). Since
list coloring is NP-hard:

26 Theory Comput Syst (2017) 61:2–30

Proposition 2 The evaluation of (F k, I) is NP-hard in k for arbitrary inequalities I.

Therefore, answering (F k, I) becomes NP-hard in k even for this simple class of
queries if we allow arbitrary set of inequalities I (this also follows from Theorem 7).
However, list coloring can be solved in polynomial time for certain graphs GI :

– Trees (the problem can be solved in time O(|V |) independent of the available
colors[13]), and in general graphs of constant treewidth.

– Complete graphs (by a reduction to bipartite matching).9

In general, if the connected components of G are either complete graphs or have
constant treewidth, list coloring can be solved in polynomial time. Therefore, on such
graphs as GI , the query (F k, I) can be computed in poly-time in k and |D|. Here we
point out that none of the other algorithms given in this paper can give a poly-time
algorithm in k, |D| for (F k, I) when GI is the complete graph (and therefore has
treewidth k). The following proposition generalizes this property:

Proposition 3 Let q be a Boolean CQ, where each relational atom has arity at most
2. If q has a vertex cover (a set of variables that can cover all relations in q) of
constant size and the list coloring problem on GI can be solved in poly-time, then
(q, I) can be answered in poly-time combined complexity.

Proof Let X = {xi1, . . . , xic} be the vertices of the vertex cover. Consider each
possible instantiation of these variables from the domain Dom; the number of such
instantiation is |Dom|c. For each such instantiation α consider the updated query qα .
Since X is a vertex cover and each relation has arity ≤ 2, in qα each relation has at
most one free variable. Relations with single variable that has been instantiated to a
unique constant from α or relations where both the variables have been instantiated
can be evaluated by a linear scan of the instance and removed thereafter. Similarly,
relations with arity 2 where exactly one of the two variables has been instantiated to
a constant can be evaluated by removing tuples from the instance that are not consis-
tent with this constant. These steps can be done in poly-time in combined complexity.
In the reduced query, each relation has exactly one free variable and therefore is
equivalent to Fn for some n (n = the number of relations in the query where exactly
one variable belongs to X). Hence if list coloring can be solved in poly-time on GI ,
(qα, I) for each instantiation α, and therefore (q, I) can be solved in poly-time in
combined complexity.

To see an example, consider the star query Zn() = R1(y, x1), . . . , Rn(y, xn)

which has a vertex cover {y} of size 1. We iterate over all possible values of y: for
each such value α ∈ Dom, the query R1(α, x1), . . . , Rn(α, xn) is equivalent to Fn,

9We can construct a bipartite graph where all vertices v appear on one side, the colors appear on the other
side, and there is an edge (v, c) if c ∈ L(v). Then the list coloring problem on complete graph is solvable
if and only if there is a perfect matching in the graph.

Theory Comput Syst (2017) 61:2–30 27

and therefore (Zn, I) can be evaluated in poly-time in combined complexity when
GI is an easy instance of list coloring.

7 CQs with Polynomial Combined Complexity for All Inequalities

This section aims to find CQs q such that computing (q, I) has poly-time combined
complexity, no matter what the choice of I is. Here we present a sufficient condition
for this, and a stronger necessary condition.

A fractional edge cover of a CQ q assigns a number vR to each relation R ∈ q

such that for each variable x,
∑

R:x∈vars(R) vR ≥ 1. A fractional vertex pack-
ing (or, independent set) of q assigns a number ux to each variable x, such that∑

x∈vars(R) ux ≤ 1 for every relation R ∈ q. By duality, the minimum fractional edge
cover is equal to the maximum fractional vertex packing. When each vR ∈ {0, 1}
we get an integer edge cover, and when each ux ∈ {0, 1} we get an integer vertex
packing.

Definition 10 A family Q of Boolean CQs has unbounded fractional (resp. integer)
vertex packing if there exists a function T (n) such that for every integer n > 0 it
can output in time poly(n) a query q ∈ Q that has a fractional (resp. integer) vertex
packing of size at least n (counting relational atoms as well as variables).

A family Q of Boolean CQs has bounded fractional (resp. integer) vertex packing
if there exists a constant b > 0 such that for any q ∈ Q, the size of any fractional
(resp. integer) vertex packing is ≤ b.

The class of path queries P k() = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1) and
cycle queries Ck() = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, x1) are examples of classes
of unbounded vertex packing.

The main theorem of this section is stated below:

Theorem 7 The following hold:

1. If a family of Boolean CQs Q has unbounded integer vertex packing, the
combined complexity of (q, I) for q ∈ Q is NP-hard.

2. If a family of CQs Q has bounded fractional vertex packing, then the combined
complexity of (q, I) is poly-time for q ∈ Q.

The NP-hardness in this theorem follows by a reduction from 3-COLORING,
whereas the poly-time algorithm uses the bound given by Atserias-Grohe-Marx [5,
12] in terms of the size of minimum fractional edge cover of the query, and the
duality between minimum fractional edge cover and maximum fractional vertex
packing.

Proof 1. NP-hardness. We do a reduction from 3-COLORING. Let G = (V , E) be
an undirected graph, where n = |V |. The goal is to color G with 3 colors such that
no two adjacent vertices have the same color. Given the family Q with unbounded

28 Theory Comput Syst (2017) 61:2–30

integer vertex packing, we construct a query with inequality (q, I) where q ∈ Q,
and an instance D such that G admits a 3-coloring if and only if (q, I) is true on
the instance D.

Find in polynomial time the query q ∈ Q such that q has an integer vertex
packing X of size n. Let X = {x1, . . . , xn} be the variables in the vertex packing.
We create an instance D as follows. Note that each relation R contains at most
one variable xi from X. If R contains no such variable, then RD = {(0, 0, . . . , 0)}
(a single tuple with value 0 for all variables). Otherwise, let xi ∈ vars(R) and
without loss of generality (wlog.), let xi be at the first position of R; then, RD =
{(c, 0, 0, . . .) | c = 1, 2, 3}. Observe that the size of the instance D is at most
3 · |q| and it is constructed in poly-time.

By construction the answer to the full query qf of q is qf (D) = {1, 2, 3}n ×
{(0, 0, . . .)}, where wlog. all x1, . . . , xn appear at the first n positions of the
head of qf . Therefore, each variable xi , i = 1, . . . , n can obtain each color
independent of the other variables. Finally, we construct a one-to-one mapping
from each vertex v ∈ V to a unique variable xv ∈ {x1, . . . , xn}, and define
I = {xu �= xv | (u, v) ∈ E}. Now it is easy to verify that G has a valid 3-coloring
if and only if (q, I) is true on D.

2. Algorithm for queries with bounded fractional vertex packing. Since the max-
imum fractional vertex packing of any q ∈ Q is ≤ b, the minimum fractional edge
cover is also ≤ b by duality. Thus from [5, 12], qf (D) can be evaluated in poly-
time in combined complexity (in time O(|q|2|D|b+1)). Further, |qf (D)| ≤ |D|b
[5, 12]. We first compute qf (D), then for each tuple in qf (D) we check whether
it satisfies the inequalities, and finally apply the projection to get the answers to
(q, I) in poly-time in combined complexity.

We illustrate the properties with some examples. Consider the family Sk() =
R(x1, . . . , xk) for k ≥ 1: this has vertex packing of size = 1 and therefore can be
answered trivially in poly-time in combined complexity for any inequality pattern
I. More generally, observe that any family of queries with a bounded number of
atoms (but unbounded number of variables) has a bounded vertex packing. On the
other hand, the class of path queries P k mentioned earlier has unbounded vertex
packing (has a vertex packing of size ≈ k

2), and therefore for certain set of inequalities
(e.g., when GI is a complete graph), the query evaluation of (P k, I) is NP-hard in
k. Similarly, the class Fk() = R1(x1), R2(x2), . . . , Rk(xk) mentioned earlier has
unbounded vertex packing, and is NP-hard in k with certain inequality patterns (see
Proposition 2).

Theorem 7 is not a dichotomy or a characterization of easy CQs w.r.t. inequal-
ities, since there is a gap between the maximum fractional and integer vertex
packing.10

10For example, for the complete graph on k vertices, the maximum integer vertex packing is of size 1
whereas the maximum fractional vertex packing is of size k

2 .

Theory Comput Syst (2017) 61:2–30 29

8 Conclusion

We studied the complexity of CQs with inequalities and compared the complexity
of query answering with and without the inequality constraints. Several questions
remain open: Is there a property that gives a dichotomy of query evaluation with
inequalities both for the class of CQs, and for the class of CQs along with the
inequality graphs? What can be said about unions of conjunctive queries (UCQ) and
recursive datalog programs? In particular extending our techniques to UCQs seems
plausible, since we can consider SPJU plans (where union is added as a relational
operator) and notice that projection distributes over union; the analogue of this trans-
formation rule in the inequality setting would allow us to carry over our results to
UCQs. Can our techniques be used as a black-box to extend any algorithm for CQs,
ie, not necessarily based on SPJ query plans, to evaluate CQs with inequalities?

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases Addison-Wesley (1995)
2. Afrati, F., Li, C., Mitra, P.: Answering Queries Using Views with Arithmetic Comparisons. In: PODS,

pp. 209–220 (2002)
3. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3), 209–

223 (1997)
4. Alon, N., Yuster, R., Zwick, U.: Color Coding. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms.

Springer (2008)
5. Atserias, A., Grohe, M., Marx, D.: Size bounds and query plans for relational joins. FOCS 739–748

(2008)
6. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. Theor. Comput. Sci 239(2),

211–229 (2000)
7. Demange, M., De Werra, D.: On some coloring problems in grids. Theor. Comput. Sci 472, 9–27

(2013)
8. Durand, A., Grandjean, E.: The complexity of acyclic conjunctive queries revisited coRR

abs/cs/0605008 (2006)
9. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM 49(6), 716–752

(2002)
10. Gottlob, G., Leone, N., Scarcello, F.: Hypertree Decompositions and Tractable Queries. In: PODS,

pp. 21–32 (1999)
11. Graham, M.: On the Universal Relation. Technical Report. University of Toronto, Ontario (1979)
12. Grohe, M., Marx, D.: Constraint Solving via Fractional Edge Covers. In: SODA, pp. 289–298 (2006)
13. Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discret. Appl. Math. 75(2), 135–

155 (1997)
14. Khayyat, Z., Lucia, W., Singh, M., Ouzzani, M., Papotti, P., Quiané-Ruiz, J., Tang, N., Kalnis, P.:

Lightning fast and space efficient inequality joins. PVLDB 8(13), 2074–2085 (2015). http://www.
vldb.org/pvldb/vol8/p2074-khayyat.pdf

15. Klug, A.: On conjunctive queries containing inequalities. J. ACM 35(1), 146–160 (1988)
16. Kolaitis, P.G., Martin, D.L., Thakur, M.N.: On the Complexity of the Containment Problem for

Conjunctive Queries with Built-In Predicates. In: PODS, pp. 197–204 (1998)
17. Koutris, P., Milo, T., Roy, S., Suciu, D.: Answering Conjunctive Queries with Inequalities. In: ICDT,

pp. 76–93 (2015)
18. van der Meyden, R.: The complexity of querying indefinite data about linearly ordered domains. J.

Comput. Syst. Sci 54(1), 113–135 (1997). doi:10.1006/jcss.1997.1455
19. Monien, B.: How to Find Long Paths Efficiently. In: Ausiello, G., Lucertini, M. (eds.) Analysis and

Design of Algorithms for Combinatorial Problems, North-Holland Mathematics Studies, vol. 109, pp.
239–254. North-Holland (1985)

http://www.vldb.org/pvldb/vol8/p2074-khayyat.pdf
http://www.vldb.org/pvldb/vol8/p2074-khayyat.pdf
http://dx.doi.org/10.1006/jcss.1997.1455

30 Theory Comput Syst (2017) 61:2–30

20. Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-Case Optimal Join Algorithms: [Extended Abstract].
In: PODS, pp. 37–48 (2012)

21. Papadimitriou, C.H., Yannakakis, M.: On the Complexity of Database Queries. In: PODS, pp. 12–19
(1997)

22. Robertson, N., Seymour, P.: Graph minors. iii. planar tree-width. J. Comb. Theory B 36(1), 49–64
(1984)

23. Veldhuizen, T.L.: Triejoin: a Simple, Worst-Case Optimal Join Algorithm. In: ICDT, pp. 96–106
(2014)

24. Yannakakis, M.: Algorithms for Acyclic Database Schemes. In: VLDB, pp. 82–94 (1981)
25. Yu, C., Ozsoyoglu, M.Z.: An Algorithm for Tree-Query Membership of a Distributed Query. In:

COMPSAC, pp. 306–312 (1979)
26. Yuster, R., Zwick, U.: Finding even cycles even faster. SIAM J. Discrete Math. 10(2), 209–222 (1997)

	Answering Conjunctive Queries with Inequalities
	Abstract
	Introduction
	Our Contributions
	Comparison with the conference version KMRS15

	Preliminaries
	Query Graph, Inequality Graph, and Augmented Graph
	Treewidth and Acyclicity of a Query

	Main Techniques
	Construction of TH(R).

	Query Plans for Inequalities
	First step
	Second step
	Third step
	(Rule-1')
	(Rule-2').
	(Rule-3').
	Computing CQs with non-SPJ Plans

	Color-coding Technique and Generalization of Theorem 1
	Comparison of Theorem 2 with Theorem 6

	CQs and Inequalities with Polynomial Combined Complexity
	CQs with Polynomial Combined Complexity for All Inequalities
	Conclusion
	References

