Tutorial:

Causality and Explanations in Databases

Alexandra Meliou
 Sudeepa Roy
 Dan Suciu

VLDB 2014
Hangzhou, China

We need to understand unexpected or interesting behavior of systems, experiments, or query answers to gain knowledge or troubleshoot

Unexpected results

		genre
select from	distinct g.genre	
	Director d, Movie_Directors md,	Fantasy
	Movie m, Genre g	History
where	d.lastName like 'Burton'	Horror
	and $\mathrm{g} . \mathrm{mid}=\mathrm{m} . \mathrm{mid}$	Music
	and m . mid=md.mid	Musical
	and md	Mystery
order by	g.genre	Romance

Unexpected results

Inconsistent performance

Inconsistent performance

Why is there such variability during this time interval?

Understanding results

Understanding results

Why does the performance of my algorithm drop when I consider additional dimensions?

Causality in science

- Science seeks to understand and explain physical observations
- Why doesn't the wheel turn?
- What if I make the beam half as thick, will it carry the load?
- How do I shape the beam so it will carry the load?

Causality in science

- Science seeks to understand and explain physical observations
- Why doesn't the wheel turn?
- What if I make the beam half as thick, will it carry the load?
- How do I shape the beam so it will carry the load?
- We now have similar questions in databases!

What is causality?

- Does acceleration cause the force?
- Does the force cause the acceleration?
- Does the force cause the mass?

What is causality?

- Does acceleration cause the force?
- Does the force cause the acceleration?
- Does the force cause the mass?

We cannot derive causality from data, yet we have developed a perception of what constitutes a cause.

Some history

Causation is a matter of perception
We remember seeing the flame, and feeling a sensation called heat; without further ceremony, we call the one cause and the other effect

David Hume (1711-1776)

Some history

Causation is a matter of perception
We remember seeing the flame, and feeling a sensation called heat; without further ceremony, we call the one cause and the other effect

David Hume (1711-1776)
Statistical ML
Forget causation! Correlation is all you should ask for.

Some history

Causation is a matter of perception
We remember seeing the flame, and feeling a sensation called heat; without further ceremony, we call the one cause and the other effect

Forget causation! Correlation is all you should ask for.

A mathematical definition of causality
Forget empirical observations! Define causality based on a network of known, physical, causal relationships

[^0]
Tutorial overview

Part 1: Causality

- Basic definitions
- Causality in AI
- Causality in DB

Part 2: Explanations

- Explanations for DB query answers
- Application-specific approaches

Part 3: Related topics and Future directions

- Connections to lineage/provenance, deletion propagation, and missing answers
- Future directions

Part 1: Causality

a. Basic Definitions
b. Causality in AI
c. Causality in DB

Part 1.a

- BASIC DEFINITIONS

Basic definitions: overview

- Modeling causality
- Causal networks
- Reasoning about causality
- Counterfactual causes
- Actual causes (Halpern \& Pearl)
- Measuring causality
- Responsibility

Causal networks

- Causal structural models:
- Variables: A, B, Y
- Structural equations: $Y=A \vee B$

Causal networks

- Causal structural models:
- Variables: A, B, Y
- Structural equations: $Y=A \vee B$

- Modeling problems:
- E.g., A bottle breaks if either Alice or Bob throw a rock at it.

Causal networks

- Causal structural models:
- Variables: A, B, Y
- Structural equations: $Y=A \vee B$

- Modeling problems:
- E.g., A bottle breaks if either Alice or Bob throw a rock at it.
- Endogenous variables:
- Alice throws a rock (A)
- Bob throws a rock (B)
- The bottle breaks (Y)

Causal networks

- Causal structural models:
- Variables: A, B, Y
- Structural equations: $Y=A \vee B$

- Modeling problems:
- E.g., A bottle breaks if either Alice or Bob throw a rock at it.
- Endogenous variables:
- Alice throws a rock (A)
- Bob throws a rock (B)
- The bottle breaks (Y)
- Exogenous variables:
- Alice's aim, speed of the wind, bottle material etc.

Intervention / contingency

- External interventions modify the structural equations or values of the variables.

Intervention / contingency

- External interventions modify the structural equations or values of the variables.

Counterfactuals

- If not A then not φ
- In the absence of a cause, the effect doesn't occur

$$
C=A \wedge B, \quad A=1 \wedge B=1 \longleftarrow \text { Both counterfactual }
$$

Counterfactuals

- If not A then $\underline{\operatorname{not} \varphi}$
- In the absence of a cause, the effect doesn't occur

$$
C=A \wedge B, \quad A=1 \wedge B=1 \longleftarrow \text { Both counterfactual }
$$

- Problem: Disjunctive causes
- If Alice doesn't throw a rock, the bottle still breaks
(because of Bob)
- Neither Alice nor Bob are counterfactual causes

$$
C=A \vee B, \quad A=1 \wedge B=1
$$

Counterfactuals

- If not A then not φ
- In the absence of a cause, the effect doesn't occur

$$
C=A \wedge B, \quad A=1 \wedge B=1 \longleftarrow \text { Both counterfactual }
$$

- Problem: Disjunctive causes
- If Alice doesn't throw a rock, the bottle still breaks
(because of Bob)
- Neither Alice nor Bob are counterfactual causes

$$
C=A \vee B, A=1 \wedge B=1 \longleftarrow \text { No counterfactual causes }
$$

Actual causes

[simplification]

A variable X is an actual cause of an effect Y if there exists a contingency that makes X counterfactual for Y.

$$
C=A \vee B, \quad A=1 \wedge B=1 \longleftarrow \mathrm{~A} \text { is a cause under the }
$$

Example 1

$Y=X_{1} \wedge X_{2}$

$$
X_{1}=X_{2}=1 \Rightarrow Y=1
$$

$X_{1}=1$ is counterfactual for $Y=1$

Example 1

$Y=X_{1} \wedge X_{2}$

$$
X_{1}=X_{2}=1 \Rightarrow Y=1
$$

$X_{1}=1$ is counterfactual for $Y=1$

Example 2

$Y=X_{1} \vee X_{2}$

$$
X_{1}=X_{2}=1 \Rightarrow Y=1
$$

$X_{1}=1$ is not counterfactual for $Y=1$
$X_{1}=1$ is an actual cause for $Y=1$, with contingency $X_{2}=0$

Example 1

$Y=X_{1} \wedge X_{2}$

$$
X_{1}=X_{2}=1 \Rightarrow Y=1
$$

$X_{1}=1$ is counterfactual for $Y=1$

Example 2

$Y=X_{1} \vee X_{2}$

$$
X_{1}=X_{2}=1 \Rightarrow Y=1
$$

$X_{1}=1$ is not counterfactual for $Y=1$
$X_{1}=1$ is an actual cause for $Y=1$, with contingency $X_{2}=0$

Example 3

$Y=\left(\neg X_{1} \wedge X_{2}\right) \vee X_{3}$

$$
X_{1}=X_{2}=X_{3}=1 \Rightarrow Y=1
$$

$X_{1}=1$ is not counterfactual for $Y=1$
$X_{1}=1$ is not an actual cause for $Y=1$

Responsibility

A measure of the degree of causality

$$
\rho=\frac{1}{1+\min _{\Gamma}|\Gamma|} \longleftarrow \begin{gathered}
\text { siz of the } \\
\text { contingency set }
\end{gathered}
$$

Responsibility

A measure of the degree of causality

$$
\rho=\frac{1}{1+\min _{\Gamma}|\Gamma|} \longleftarrow \begin{gathered}
\text { size of the } \\
\text { contingency set }
\end{gathered}
$$

Example

$Y=A \wedge(B \vee C)$

$$
A=B=C=1 \Rightarrow Y=1
$$

$A=1$ is counterfactual for $Y=1 \quad(\rho=1)$
$B=1$ is an actual cause for $Y=1$, with contingency $C=0(\rho=0.5)$

Basic definitions: summary

- Causal networks model the known variables and causal relationships
- Counterfactual causes have direct effect to an outcome
- Actual causes extend counterfactual causes and express causal influence in more settings
- Responsibility measures the contribution of a cause to an outcome

Part 1.b

- CAUSALITY IN AI

Causality in AI: overview

- Actual causes: going deeper into the HalpernPearl definition
- Complications of actual causality and solutions
- Complexity of inferring actual causes

Dealing with complex settings

- The definition of actual causes was designed to capture complex scenarios

Permissible contingencies

Not all contingencies are valid => Restrictions in the Halpern-Pearl definition of actual causes.

Preemption

Model priorities of events => one event may preempt another

Permissible contingencies

A: Alice loads Bob's gun
B: Bob shoots
C: Charlie loads and shoots his own gun
Y: the prisoner dies

Permissible contingencies

In the contingency $\{A=1, B=1, C=0\}, A$ is counterfactual, but should it be a cause?

A: Alice loads Bob's gun
B: Bob shoots
C: Charlie loads and shoots his own gun
Y : the prisoner dies

Permissible contingencies

A: Alice loads Bob's gun
B: Bob shoots
C: Charlie loads and shoots his own gun
Y: the prisoner dies

Permissible contingencies

A: Alice loads Bob's gun
B: Bob shoots
C: Charlie loads and shoots his own gun
Y : the prisoner dies

Additional restriction in the HP definition:

Nodes in the causal path should not change value.

Causal priority: preemption

A: Alice throws a rock
B: Bob throws a rock
Y : the bottle breaks

Causal priority: preemption

A: Alice throws a rock
B: Bob throws a rock
Y: the bottle breaks

Causal priority: preemption

A: Alice throws a rock
B: Bob throws a rock
Y: the bottle breaks

Causal priority: preemption

A: Alice throws a rock
B: Bob throws a rock
Y: the bottle breaks

Causal priority: preemption

Causal priority: preemption

A: Alice throws a rock
B: Bob throws a rock
Y: the bottle breaks

Even though the structural equations for Y are equivalent, the two causal networks result in different interpretations of causality

Complications

- Intricacy
- The definition has been used incorrectly in literature: [Chockler, 2008]

Complications

- Intricacy
- The definition has been used incorrectly in literature: [Chockler, 2008]
- Dependency on graph structure and syntax

Complications

- Intricacy
- The definition has been used incorrectly in literature: [Chockler, 2008]
- Dependency on graph structure and syntax
- Counterintuitive results

Complications

- Intricacy
- The definition has been used incorrectly in literature: [Chockler, 2008]
- Dependency on graph structure and syntax
- Counterintuitive results

Shock C

Complications

- Intricacy
- The definition has been used incorrectly in literature: [Chockler, 2008]
- Dependency on graph structure and syntax
- Counterintuitive results

Shock C
Network expansion

Defaults and normality

- World: a set of values for all the variables
- Rank: each world has a rank; the higher the rank, the less likely the world
- Normality: can only pick contingencies of lower rank (more likely worlds)

Defaults and normality

- World: a set of values for all the variables
- Rank: each world has a rank; the higher the rank, the less likely the world
- Normality: can only pick contingencies of lower rank (more likely worlds)

Addresses some of the complications, but requires ordering of possible worlds.

Complexity of causality

Counterfactual cause Actual cause PTIME
 NP-complete

Proof: Reduction from SAT.
Given F, F is satisfiable iff X is an actual cause for $X \wedge F$

Complexity of causality

Counterfactual cause Actual cause PTIME
 NP-complete

Proof: Reduction from SAT.
Given F, F is satisfiable iff X is an actual cause for $X \wedge F$

For non-binary models: Σ_{2}^{P}-complete

Tractable cases

1. Causal trees

Tractable cases

1. Causal trees

Actual causality can be determined in linear time

Tractable cases

2. Width-bounded decomposable causal graphs

Tractable cases

2. Width-bounded decomposable causal graphs

It is unclear whether decompositions can be efficiently computed

Tractable cases

3. Layered causal graphs

Tractable cases

3. Layered causal graphs

Layered graphs are decompositions that can be computed in linear time.

Causality in AI: summary

- Actual causes:
- permissible contingencies and preemption
- Weaknesses of the HP definition: normality
- Complexity:
- Based on a given causal network
- Tractable cases

Part 1.c

- CAUSALITY IN DATABASES

Causality in databases: overview

- What is the causal network, a cause, and responsibility in a DB setting?

Motivating example: IMDB dataset

IMDB Database Schema

Motivating example: IMDB dataset

IMDB Database Schema

Query

Motivating example: IMDB dataset

IMDB Database Schema

Actor				
aid	firstName		lastName	
Director				
$\underline{\text { did }}$	firstName		lastName	
Movie				
$\underline{\text { mid }}$	name	year		ank
Genre		Mo	ovie	Direc
mid	genre		did	mid
Casts				
aid	mid	role		

Query

Motivating example: IMDB dataset

IMDB Database Schema

Actor				
aid	firstName		lastName	
Director				
did	firstName		lastName	
Movie				
mid	name	year		ank
Genre			ovie	Direc
mid	genre		did	mid
Casts				
aid	mid	role		

Query

Motivating example: IMDB dataset

IMDB Database Schema

Actor				
aid	firstName		lastName	
Director				
did	firstName		lastName	
Movie				
mid	name	year		ank
Genre			ovie	Direc
mid	genre		did	mid
Casts				
aid	mid	role		

Query

What can databases do

Provenance / Lineage:

The set of all tuples that contributed to a given output tuple
[Cheney et al. FTDB 2009], [Buneman et al. ICDT 2001], ...

Motivating example: IMDB dataset

IMDB Database Schema

Actor				
aid	firstName		lastName	
Director				
did	firstName		lastName	
Movie				
mid	name	year		ank
Genre			ovie	Direc
mid	genre		did	mid
Casts				
aid	mid	role		

Query

What can databases do

Provenance / Lineage:

The set of all tuples that contributed to a given output tuple
[Cheney et al. FTDB 2009], [Buneman et al. ICDT 2001], ...

But

In this example, the lineage includes 137 tuples !!
[Meliou et al., 2010]

From provenance to causality

[Meliou et al., 2010]

From provenance to causality

[Meliou et al., 2010]

From provenance to causality

[Meliou et al., 2010]

From provenance to causality

From provenance to causality

Goal:

Rank tuples in order of importance

Ranking Provenance

Answer tuple
Movie(526338, "Sweeney Todd", 2007)
Director(23456, David, Burton)
Director(23468, Humphrey, Burton)
Director(23488, Tim, Burton)
Movie(359516, "Let's Fall in Love", 1933)
Movie(565577, "The Melody Lingers On", 1935)
Movie(6539, "Candide", 1989)
Movie(173629, "Flight", 1999)
Movie(389987, "Manon Lescaut", 1997)

Causality for database queries

Input: database D and query Q . Output:
$\mathrm{D}^{\prime}=\mathrm{Q}(\mathrm{D})$

- Exogenous tuples: D ${ }^{\mathrm{x}}$
- Not considered for causality: external sources, trusted sources, certain data
- Endogenous tuples: D^{n}
- Potential causes: untrusted sources or tuples

Causality for database queries

Input: database D and query Q. Output:
$\mathrm{D}^{\prime}=\mathrm{Q}$ (D)

- Causal network:
- Lineage of the query

Causality of a query answer

Input: database D and query Q. Output:
$\mathrm{D}^{\prime}=\mathrm{Q}(\mathrm{D})$

- $t \in D^{n}$ is a counterfactual cause for answer α
- If $\alpha \in Q(D)$ and $\alpha \notin Q(D-t)$
- $t \in D^{n}$ is an actual cause for answer α
- If $\exists \Gamma \subset D^{n}$ such that t is counterfactual in $D-\Gamma$
contingency set

Relationship with Halpern-Pearl causality

- Simplified definition:
- No preemption
- More permissible contingencies
- Open problems:
- More complex query pipelines and reuse of views may require preemption
- Integrity and other constraints may restrict permissible contingencies

Complexity

- Do the results of Eiter and Lukasiewicz apply?

Complexity

- Do the results of Eiter and Lukasiewicz apply?
- Specific causal network \rightarrow specific data instance

Complexity

- Do the results of Eiter and Lukasiewicz apply?
- Specific causal network \rightarrow specific data instance
- What is the complexity for a given query?
- A given query produces a family of possible lineage expressions (for different data instances)
- Data complexity:
the query is fixed, the complexity is a function of the data

Complexity

- For every conjunctive query, causality is: Polynomial, expressible in FO

Complexity

- For every conjunctive query, causality is: Polynomial, expressible in FO
- Responsibility is a harder problem

Responsibility: example

Directors

did	firstName	lastName
28736	Steven	Spielberg
67584	Quentin	Tarantino
23488	Tim	Burton
72648	Luc	Besson

Query: (Datalog notation)
q :- Directors(did,' Tim','Burton'), Movie_Directors (did,mid)

Responsibility: example

Lineage expression: $s_{1} r_{1} \vee s_{1} r_{2}$

Responsibility: example

Lineage expression: $s_{1} r_{1} \vee s_{1} r_{2}$
Responsibility: $\quad \rho_{t}=\frac{1}{1+\min _{\Gamma}|\Gamma|}$

Responsibility: example

Lineage expression: $s_{1} r_{1} \vee s_{1} r_{2}$
Responsibility: $\quad \rho_{t}=\frac{1}{1+\min _{\Gamma}|\Gamma|}$

$$
\rho_{s_{1}}=1 \quad \Gamma=\emptyset
$$

Responsibility: example

Lineage expression: $s_{1} r_{1} \vee s_{1} r_{2}$
Responsibility: $\quad \rho_{t}=\frac{1}{1+\min _{\Gamma}|\Gamma|}$

$$
\begin{array}{ll}
\rho_{s_{1}}=1 & \Gamma=\emptyset \\
\rho_{r_{1}}=\frac{1}{2} & \Gamma=\left\{r_{2}\right\}
\end{array}
$$

Responsibility dichotomy

PTIME	NP-hard	
$q_{1}:-\quad R(x, y), S(y, z)$		
$q_{2}:-\quad A(x) S_{1}(x, v), S_{2}(v, y)$,		
$B(y, u), S_{3}(y, z), D(z, w), C(z)$	$h_{1}^{*}:-\quad A(x), B(y), C(z), W(x, y, z)$	
	$h_{2}^{*}:-\quad R(x, y), S(y, z), T(z, x)$	
		$A(x), B(y), C(z)$,
	$R(x, y), S(y, z), T(z, x)$	

Responsibility dichotomy

PTIME	NP-hard
$\begin{aligned} \hline q_{1}:-\quad & R(x, y), S(y, z) \\ q_{2}:-\quad & A(x) S_{1}(x, v), S_{2}(v, y), \\ & B(y, u), S_{3}(y, z), D(z, w), C(z) \end{aligned}$	$\begin{aligned} h_{1}^{*}:- & A(x), B(y), C(z), W(x, y, z) \\ h_{2}^{*}:- & R(x, y), S(y, z), T(z, x) \\ h_{3}^{*}:- & A(x), B(y), C(z), \\ & R(x, y), S(y, z), T(z, x) \end{aligned}$

Responsibility dichotomy

PTIME	NP-hard
$\begin{aligned} q_{1}:-\quad & R(x, y), S(y, z) \\ q_{2}:- & A(x) S_{1}(x, v), S_{2}(v, y), \\ & B(y, u), S_{3}(y, z), D(z, w), C(z) \end{aligned}$	$\begin{aligned} h_{1}^{*}:- & A(x), B(y), C(z), W(x, y, z) \\ h_{2}^{*}:- & R(x, y), S(y, z), T(z, x) \\ h_{3}^{*}:- & A(x), B(y), C(z), \\ & R(x, y), S(y, z), T(z, x) \end{aligned}$
q_{2}	

Responsibility dichotomy

Responsibility in practice

Responsibility in practice

Responsibility in practice

Responsibility in practice

Post-factum data cleaning

[Meliou et al., 2011]

Context Aware Recommendations

Data

Context Aware Recommendations

Data

Context Aware Recommendations

Context Aware Recommendations

Data

Context Aware Recommendations

Solution

- Extension to view-conditioned causality
- Ability to condition on multiple correct or incorrect outputs

Solution

- Extension to view-conditioned causality
- Ability to condition on multiple correct or incorrect outputs
- Reduction of computing responsibility to a Max SAT problem
- Use state-of-the-art tools

Reasoning with causality
 vs
 Learning causality

Reasoning with causality
Vs

Learning causality

Learning causal structures

[Silverstein et al., 1998] [Maier et al., 2010]

Learning causal structures

Learning causal structures

Conditional independence:

Is one actor's popularity conditionally independent of the popularity of other actors appearing in the same movie, given that movie's success

Application of the Markov condition

Learning causal structures

Causal intuition in humans:
Understand it to discover better causal models from data

- Experimentally test how humans make associations
- Discovery: Humans use context, often violating Markovian conditions

Causality in databases: summary

- Provenance as causal network, tuples as causes
- Complexity for a query (rather than a data instance)
- Many tractable cases
- Inferring causal relationships in data

Part 2: Explanations

a. Explanations for general DB query answers b. Application-Specific DB Explanations

Part 2.a

- EXPLANATIONS FOR GENERAL DB QUERY ANSWERS

Fine-grained Actual Cause $=$ Tuples

- Causality in AI and DB
- defined by intervention
- In DB, goal was to compute the "responsibility" of individual input tuples in generating the output and rank them accordingly

Coarse-grained Explanations

= Predicates

- For "big data", individual input tuples may have little effect in explaining outputs. We need broader, coarse-grained explanations, e.g., given by predicates
- More useful to answer questions on aggregate queries visualized as graphs
- Less formal concept than causality
- definition and ranking criteria sometimes depend on applications (more in part 2.b)

Example Question \#1

Question on aggregate output

Time		Sensor Volt	Humid Temp	
11	1	2.64	0.4	34
11	2	2.65	0.3	40
11	3	2.63	0.3	35
12	1	2.7	0.5	35
12	2	2.7	0.4	38
12	3	2.2	0.3	100
1	1	2.7	0.5	35
1	2	2.65	0.5	38
1	3	2.3	0.5	80

SELECT time, AVG(Temp) FROM readings GROUP BY time

Why is the avg. temp. high at time 12 pm and 1 pm , and low at time 11 am ?

Example Question \#2

Question on aggregate output

Dataset:
 Pre-processed DBLP
 + Affiliation data
 (not all authors have affiliation info)

Why is there a peak for \#sigmod papers from industry in 2000-06, while \#academia papers kept increasing?

Ideal goal: Why 三 Causality

But, TRUE causality is difficult...

- True causality needs controlled, randomized experiments (repeat history)
- The database often does not even have all variables that form actual causes
- Given a limited database, broad explanations are more informative than actual causes (next slide)

Broad Explanations are more informative than Actual Causes

- We cannot repeat history and individual tuples are less informative

Less informative

Broad Explanations are more informative than Actual Causes

- We cannot repeat history and individual tuples are less informative

predicate: Volt < 2.5 \& Sensor = 3

Explanation can still be defined using "intervention" like causality!

Explanation by Intervention

- Causality (in AI) by intervention:
X is
a cause of Y,
if removal of X also removes Y
keeping other conditions unchanged

Explanation by Intervention

- Causality (in AI) by intervention:
X is
a cause of Y,
if removal of X
also removes Y
keeping other conditions unchanged
- Explanation (in DB) by intervention:

Explanation by Intervention

- Causality (in AI) by intervention:
X is
a cause of Y,
if removal of X
also removes Y
keeping other conditions unchanged
- Explanation (in DB) by intervention:

A predicate X is

Explanation by Intervention

- Causality (in AI) by intervention:
X is
a cause of Y,
if removal of X
also removes Y
keeping other conditions unchanged
- Explanation (in DB) by intervention:

A predicate X is
an explanation of one or more outputs Y ,

Explanation by Intervention

- Causality (in AI) by intervention:
X is
a cause of Y,
if removal of X
also removes Y
keeping other conditions unchanged
- Explanation (in DB) by intervention:

A predicate X is
an explanation of one or more outputs Y ,
if removal of tuples satisfying predicate X

Explanation by Intervention

- Causality (in AI) by intervention:
X is
a cause of Y,
if removal of X
also removes Y
keeping other conditions unchanged
- Explanation (in DB) by intervention:

A predicate X is
an explanation of one or more outputs Y ,
if removal of tuples satisfying predicate X also changes Y

Explanation by Intervention

- Causality (in AI) by intervention:
X is
a cause of Y,
if removal of X
also removes Y
keeping other conditions unchanged
- Explanation (in DB) by intervention:

A predicate X is
an explanation of one or more outputs Y ,
if removal of tuples satisfying predicate X also changes Y
keeping other tuples unchanged

Why is the AVG(temp.) at 12pm so high?
predicate: Sensor = 3

We need a scoring function for ranking and returning top explanations...

Scoring Function: Influence

$\operatorname{infl}_{\text {agg }}(\mathrm{p})=$
Change in output
(\# of records to make the change)

Scoring Function: Influence

Change in output
$\operatorname{infl}_{\text {agg }}(\mathrm{p})=$
(\# of records to make the change)

Sensor = 3

$\frac{21.1}{1}=21.1$
One tuple
causes the change

Scoring Function: Influence

Change in output
$\operatorname{infl}_{\text {agg }}(\mathrm{p})=$
(\# of records to make the change)

Sensor = 3

$$
\text { Sensor = } 3 \text { or } 2
$$

$\frac{21.1}{1}=21.1$
One tuple
causes the change
$\frac{22.6}{2}=11.3$
Two tuples
cause the change

Scoring Function: Influence

Change in output
$\operatorname{infl}_{\text {agg }}(p)=\frac{\text { ef records to make the change) }}{(\# \text { of }}$

Sensor = 3

Sensor $=3$ or 2

$\frac{21.1}{1}=21.1$
One tuple
causes the change
22.6

$$
\frac{2}{2}=11.3
$$

Two tuples
cause the change

Scoring Function: Influence

Change in output
infl $_{\text {agg }}(\mathrm{p})=\frac{\text { Change in output }}{(\# \text { of records to make the change })^{\lambda}}$

Sensor = 3

Sensor $=3$ or 2

$\frac{21.1}{1}=21.1$
One tuple
causes the change
22.6

$$
\frac{2}{2}=11.3
$$

Two tuples
cause the change

Scoring Function: Influence

Change in output
$\operatorname{infl}_{\text {agg }}(\mathrm{p})=$
(\# of records to make the change)
Top explanation for $\lambda=1$

$$
\text { Sensor = } 3
$$

$$
\text { Sensor = } 3 \text { or } 2
$$

$$
\frac{21.1}{1}=21.1
$$

One tuple
causes the change
22.6

$$
\frac{2}{2}=11.3
$$

Two tuples
cause the change

Scoring Function: Influence

Change in output
$\operatorname{infl}_{\text {agg }}(\mathrm{p})=$
(\# of records to make the change)

Top explanation for $\lambda=1$
Sensor = 3
$\frac{21.1}{1}=21.1$
One tuple
causes the change

Top explanation for $\boldsymbol{\lambda}=0$
Sensor $=3$ or 2
22.6
$\frac{2}{2}=11.3$
Two tuples
cause the change

Summary: System "Scorpion"

- Input: SQL query, outliers, normal values, λ, \ldots
- Output: predicate p having highest influence

Summary: System "Scorpion"

- Input: SQL query, outliers, normal values, λ, ...
- Output: predicate p having highest influence
- Uses a top-down decision tree-based algorithm that recursively partitions the predicates and merges similar predicates
- Naïve algo is too slow as the search space of predicates is huge

Summary: System "Scorpion"

- Input: SQL query, outliers, normal values, λ, \ldots
- Output: predicate p having highest influence
- Uses a top-down decision tree-based algorithm that recursively partitions the predicates and merges similar predicates
- Naïve algo is too slow as the search space of predicates is huge
- Simple notion of intervention (implicit):

Delete tuples that satisfy a predicate

More Complex Intervention: Causal Paths in Data

Intervention in general due to a given predicate:
Delete the tuples that satisfy the predicate, also delete tuples that directly or indirectly depend on them through causal paths

More Complex Intervention: Causal Paths in Data

Intervention in general due to a given predicate:
Delete the tuples that satisfy the predicate, also delete tuples that directly or indirectly depend on them through causal paths

- Causal path is inherent to the data and is independent of the DB query or question asked by the user
- Next: Illustration with the DBLP example

Causal Paths by Foreign Key Constraints

- Causal path $X \rightarrow Y$: removing X removes Y
- Analogy in DB:

Foreign key constraints and cascade delete semantics

Causal Paths by Foreign Key Constraints

- Causal path $X \rightarrow Y$: removing X removes Y
- Analogy in DB:

Foreign key constraints and cascade delete semantics

Author				Authored	
id	name	st	dom		
A1	JG	C.edu	edu	id	pubid
A2	RR	M.com	com com	A1	P1
A3	CM	I.com		A2	P1
Publication				A1	P2
pubi	year	\| venue		A3	P2
P1	2001	SIGMOD		A2	P3
P2	2011	VLDB		A3	P3
P3	2001	SIGMOD			

Causal Paths by Foreign Key Constraints

- Causal path $X \rightarrow Y$: removing X removes Y
- Analogy in DB:

Foreign key constraints and cascade delete semantics

Causal Paths by Foreign Key Constraints

- Causal path $X \rightarrow Y$: removing X removes Y
- Analogy in DB:

Foreign key constraints and cascade delete semantics

Causal Paths by Foreign Key Constraints

- Causal path $X \rightarrow Y$: removing X removes Y
- Analogy in DB:

Foreign key constraints and cascade delete semantics

Causal Paths by Foreign Key Constraints

- Causal path $X \rightarrow Y$: removing X removes Y
- Analogy in DB:

Foreign key constraints and cascade delete semantics

Causal Paths by Foreign Key Constraints

- Causal path $X \rightarrow Y$: removing X removes Y
- Analogy in DB:

Foreign key constraints and cascade delete semantics

Causal Paths by Foreign Key Constraints

- Causal path $X \rightarrow Y$: removing X removes Y
- Analogy in DB:

Foreign key constraints and cascade delete semantics

Causal Paths by Foreign Key Constraints

- Causal path $X \rightarrow Y$: removing X removes Y
- Analogy in DB:

Foreign key constraints and cascade delete semantics

Causal Paths by Foreign Key Constraints

- Causal path $X \rightarrow Y$: removing X removes Y
- Analogy in DB:

Foreign key constraints and cascade delete semantics

Causal Paths by Foreign Key Constraints

Intuition:

- An author can exist if one of her papers is deleted
- A paper cannot exist if any of its co-authors is deleted

Note: Both F.K.s could be standard

Intervention through Causal Paths

- Forward
- Reverse

Intervention through Causal Paths

Candidate explanation predicate ϕ : [name = 'RR']

- Forward
- Reverse

Author					Authored	
id	name		$\begin{aligned} & \text { inst } \\ & \hline \text { C.edu } \end{aligned}$	$\frac{\text { dom }}{\text { edu }}$		
A1	JG				id	pubid
A2	RR		M.com	com	A1	P1
A3	CM		I.com	com	A2	P1
Publication					A1	P2
pubi		year			A3	P2
P1		2001	SIG	OD		
P2		2011	- VL		A2	P3
P3		2001	SIG	OD	A3	P3

Intervention through Causal Paths

Candidate explanation predicate ϕ : [name = 'RR']

- Forward
- Reverse

Intervention through Causal Paths

Candidate explanation predicate ϕ : [name = 'RR']

- Forward
- Reverse

Intervention through Causal Paths

Candidate explanation predicate ϕ : [name = 'RR']

- Forward
- Reverse

Intervention through Causal Paths

Candidate explanation predicate ϕ : [name = 'RR']

- Forward
- Reverse

Author				Authored	
id	name	inst	dom		
A1	JG	C.edu	edu	id	pubid
()					
A3	CM	I.com	com	2	
Publication				A1	P2
pubi	- ${ }^{\text {yea }}$	venue		A3	P2
		Pl			
P2 2		VLDB			
P3- ${ }^{\text {P }}$				A3	P3
Interv Tuples	ntion T_{0} tha	atisfy ϕ	Tu	le from	T_{0}

Intervention through Causal Paths

Candidate explanation predicate ϕ : [name = 'RR']

- Forward
- Reverse

Author				Authored	
id	name	inst	dom		
A1	JG	C.edu	edu	id	pubid
A3	CM	I.com	com	12	
Publication				A1	P2
pubi	- ${ }^{\text {yea }}$	venue		A3	P2
		P1-2001			
P2		VLDB			
P3 ${ }^{\text {P/ }}$					P8
Interv Tuples	ntion T_{0} that	atisfy ϕ	Tu	le fr	T_{0}

Intervention through Causal Paths

Candidate explanation predicate ϕ : [name = 'RR']

- Forward
- Reverse

Intervention through Causal Paths

Candidate explanation predicate ϕ : [name = 'RR']

- Forward
- Reverse

Intervention through Causal Paths

Candidate explanation predicate ϕ : [name = 'RR']

- Forward
- Reverse

Given ϕ, computation of Δ_{ϕ} requires a recursive query

Two sources of complexity

1. Huge search space of predicates (standard)
2. For any such predicate, run a recursive query to compute intervention (new)

- The recursive query is poly-time, but still not good enough

Two sources of complexity

1. Huge search space of predicates (standard)
2. For any such predicate, run a recursive query to compute intervention (new)

- The recursive query is poly-time, but still not good enough
- Data-cube-based bottom-up algorithm to address both challenges
- Matches the semantic of recursive query for certain inputs, heuristic for others (open problem: efficient algorithm that matches the semantic for all inputs)

Qualitative Evaluation (DBLP)

Hard due to lack of gold standard
Q. Why is there a peak for \#sigmod papers from industry during 2000-06, while \#academia papers kept increasing?

Qualitative Evaluation (DBLP)

rank	explanation (predicates)
1	[affiliation $=$ ibm.com]
2	[affiliation = bell-labs.com]
3	[author $=$ Rajeev Rastogi]
4	[affiliation = ucla.edu]
5	[author $=$ Hamid Pirahesh]
6	[affiliation = asu.edu]
7	[author $=$ Rakesh Agrawal]
8	[affiliation $=$ utah.edu]
9	[affiliation $=$ gwu.edu]

Q. Why is there a peak for \#sigmod papers from industry during 2000-06, while \#academia papers kept increasing?

Qualitative Evaluation (DBLP)

rank	explanation (predicates)
	[affiliation $=$ ibm.com]
	[affiliation = bell-labs.com]
	[author = Rajeev Rastogi]
4	[affiliation = ucla.edu]
	[author = Hamid Pirahesh]
6	[affiliation = asu.edu]
	[author = Rakesh Agrawal]
8	[affiliation = utah.edu]
9	[affiliation = gwu.edu]

Q. Why is there a peak for \#sigmod papers from industry during 2000-06, while \#academia papers kept increasing?

Intuition:

1. If we remove these industrial labs and their senior researchers, the peak during 2000-04 is more flattened

Qualitative Evaluation (DBLP)

rank	explanation (predicates)
1	affiliation $=$ ibm.com]
2	affiliation $=$ bell-labs.com]
3	[author = Rajeev Rastogi]
	affiliation = ucla.edu]
5	author $=$ Hamid Pirahesh]
	affiliation = asu.edu]
7	[author = Rakesh Agrawal]
affiliation $=$ utah.edu][affiliation $=$ gwu.edu]	

Q. Why is there a peak for \#sigmod papers from industry during 2000-06, while \#academia papers kept increasing?

Intuition:

1. If we remove these industrial labs and their senior researchers, the peak during 2000-04 is more flattened
2. If we remove these universities with relatively new but highly prolific db groups, the curve for academia is less increasing

Summary: Explanations for DB

In general, follow these steps:

Summary: Explanations for DB

In general, follow these steps:

- Define explanation
- Simple predicates, complex predicates with aggregates, comparison operators, ...

Summary: Explanations for DB

In general, follow these steps:

- Define explanation
- Simple predicates, complex predicates with aggregates, comparison operators, ...
- Define additional causal paths in the data (if any)
- Independent of query/user question

Summary: Explanations for DB

In general, follow these steps:

- Define explanation
- Simple predicates, complex predicates with aggregates, comparison operators, ...
- Define additional causal paths in the data (if any)
- Independent of query/user question
- Define intervention
- Delete tuples
- Insert/update tuples (future direction)
- Propagate through causal paths

Summary: Explanations for DB

In general, follow these steps:

- Define explanation
- Simple predicates, complex predicates with aggregates, comparison operators, ...
- Define additional causal paths in the data (if any)
- Independent of query/user question
- Define intervention
- Delete tuples
- Insert/update tuples (future direction)
- Propagate through causal paths
- Define a scoring function
- to rank the explanations based on their intervention
- Find top-k explanations efficiently

Part 2.b

- APPLICATION-SPECIFIC DB EXPLANATIONS

Application-Specific Explanations

1. Map-Reduce
2. Probabilistic Databases
3. Security
4. User Rating

We will discuss their notions of explanation and skip the details

Disclaimer:

- There are many applications/research papers that address explanations in one form or another; we cover only a few of them as representatives

1. Explanations for Map Reduce Jobs

[Khoussainova et al., 2012]

A MapReduce Scenario

[Khoussainova et al, 2012]

A MapReduce Scenario

Explanation by "PerfXPlain"

DFS block size >= 256 MB and \#nodes = 150

Why was the second job as slow as the first job? I expected it to be much faster!

Explanation by "PerfXPlain"

DFS block size >= 256 MB and \#nodes = 150

32 GB / 256 MB $=128$ blocks. There are 150 nodes!
Completion time $=$ time to process one block.

Why was the second job as slow as the first job? I expected it to be much faster!

Explanation by "PerfXPlain"

DFS block size >= 256 MB and \#nodes = 150

32 GB / 256 MB $=128$ blocks.
There are 150 nodes!
Completion time $=$ time to process one block.

Why was the second job as slow as the first job? I expected it to be much faster!

Explanation by "PerfXPlain"

DFS block size >= 256 MB and \#nodes = 150

32 GB / 256 MB = 128 blocks. There are 150 nodes!

Completion time $=$ time to process one block.

Why was the second job as slow as the first job? I expected it to be much faster!

Explanation by "PerfXPlain"

DFS block size >= 256 MB and \#nodes = 150

Completion time $=$ time to process one block.

PerfXPlain uses a log of past job history and returns predicates on cluster config, job details, load etc. as explanations

2. Explanations for Probabilistic Database

[Kanagal et al, 2012]

Review: Query Evaluation in Prob. DB.

Boolean query Q: $\exists \mathrm{x} \exists \mathrm{y}$ AsthmaPatient(x) ^ Friend (x, y) ^ Smoker(y)

Review: Query Evaluation in Prob. DB.

	AsthmaPatient	
\mathbf{X}_{1}	Ann	0.1
$\mathbf{X}_{\mathbf{2}}$	Bob	0.4

Probabilistic Database D

		Friend					Probability

Boolean query Q: $\exists \mathrm{x} \exists \mathrm{y}$ AsthmaPatient(x) ^ Friend (x, y) ^ Smoker(y)

- $Q(D)$ is not simply true/false, has a probability $\operatorname{Pr}[Q(D)]$ of being true

Review: Query Evaluation in Prob. DB.

	AsthmaPatient	
\mathbf{X}_{1}	Ann	0.1
\mathbf{X}_{2}	Bob	0.4

Probabilistic Database D

		Friend				

Boolean query Q: $\exists \mathrm{x} \exists \mathrm{y}$ AsthmaPatient(x) ^ Friend (x, y) ^ Smoker(y)

- $Q(D)$ is not simply true/false, has a probability $\operatorname{Pr}[Q(D)]$ of being true Lineage: $F_{Q, D}=\left(x_{1} \wedge y_{1} \wedge z_{1}\right) \vee\left(x_{1} \wedge y_{2} \wedge z_{2}\right) \vee\left(x_{2} \wedge y_{3} \wedge z_{2}\right)$
- \mathbf{Q} is true on $\mathbf{D} \Leftrightarrow F_{Q, D}$ is true

$$
\operatorname{Pr}\left[F_{\mathrm{Q}, \mathrm{D}}\right]=\operatorname{Pr}[\mathrm{Q}(\mathrm{D})]
$$

Explanations for Prob. DB.

Explanation for $\mathrm{Q}(\mathrm{D})$ of size k :

- A set S of tuples in $D,|S|=k$, such that $\operatorname{Pr}[Q(D)]$ changes the most when we set the probabilities of all tuples in S to 0
- i.e. when tuples in S are deleted (intervention)

Explanations for Prob. DB.

Explanation for $\mathrm{Q}(\mathrm{D})$ of size k :

- A set S of tuples in $D,|S|=k$, such that $\operatorname{Pr}[Q(D)]$ changes the most when we set the probabilities of all tuples in S to 0
- i.e. when tuples in S are deleted (intervention)

Example

Lineage: $(a \wedge b) \vee(c \wedge d)$
Probabilities: $\operatorname{Pr}[\mathrm{a}]=\operatorname{Pr}[\mathrm{b}]=0.9, \quad \operatorname{Pr}[\mathrm{c}]=\operatorname{Pr}[\mathrm{d}]=0.1$

Explanations for Prob. DB.

Explanation for $\mathrm{Q}(\mathrm{D})$ of size k :

- A set S of tuples in $D,|S|=k$, such that $\operatorname{Pr}[Q(D)]$ changes the most when we set the probabilities of all tuples in S to 0
- i.e. when tuples in S are deleted (intervention)

Example

Lineage: $(a \wedge b) \vee(c \wedge d)$
Probabilities: $\operatorname{Pr}[\mathrm{a}]=\operatorname{Pr}[\mathrm{b}]=0.9, \quad \operatorname{Pr}[\mathrm{c}]=\operatorname{Pr}[\mathrm{d}]=0.1$
Explanation of size 1: $\{\mathrm{a}\}$ or $\{\mathrm{b}\}$

Explanations for Prob. DB.

Explanation for $\mathrm{Q}(\mathrm{D})$ of size k :

- A set S of tuples in $D,|S|=k$, such that $\operatorname{Pr}[Q(D)]$ changes the most when we set the probabilities of all tuples in S to 0
- i.e. when tuples in S are deleted (intervention)

Example

Lineage: $(a \wedge b) \vee(c \wedge d)$
Probabilities: $\operatorname{Pr}[a]=\operatorname{Pr}[b]=0.9, \quad \operatorname{Pr}[c]=\operatorname{Pr}[d]=0.1$
Explanation of size 1: $\{\mathrm{a}\}$ or $\{b\}$
Explanation of size 2:
Any of four combinations $\{a, b\} \times\{c, d\}$ that makes $\operatorname{Pr}[Q(D)]=0$ and NOT $\{a, b\}$

Explanations for Prob. DB.

Explanation for $\mathrm{Q}(\mathrm{D})$ of size k :

- A set S of tuples in $D,|S|=k$, such that $\operatorname{Pr}[Q(D)]$ changes the most when we set the probabilities of all tuples in S to 0
- i.e. when tuples in S are deleted (intervention)

Example

Lineage: $(a \wedge b) \vee(c \wedge d)$
NP-hard, but
poly-time for special cases

$$
\operatorname{Pr}[c]=\operatorname{Pr}[d]=0.1
$$

Explanation of size 1: $\{a\}$ or $\{b\}$
Explanation of size 2:
Any of four combinations $\{a, b\} \times\{c, d\}$ that makes $\operatorname{Pr}[Q(D)]=0$ and NOT $\{a, b\}$

3. Explanations for
 Security and Access Logs

[Fabbri-LeFevre, 2011]
[Bender et al., 2014]

3a. Medical Record Security

- Security of patient data is immensely important
- Hospitals monitor accesses and construct an audit log
- Large number of accesses, difficult for compliance officers monitor the audit log
- Goal: Improve the auditing system so that it is easier to find inappropriate accesses by "explaining" the reason for access

Explanation by Existence of Paths

Consider this sample audit log and associated database:

Lid	Date	User	Patient
1	$1 / 1 / 12$	Dr. Bob	Alice
2	$1 / 2 / 12$	Dr. Mike	Alice
2	$1 / 3 / 12$	Dr. Evil	Alice

Audit Log

Patient	Date	Doctor
Alice	$1 / 1 / 12$	Dr. Bob

Appointments

Doctor	Department
Dr. Bob	Pediatrics
Dr. Mike	Pediatrics

Departments

Explanation by Existence of Paths

An access is explained if there exists a path:

- From the data accessed (Patient) to the user accessing the data (User)
- Through other tables/tuples stored in the DB

Lid	Date	User	Patient
1	$1 / 1 / 12$	Dr. Bob	Alice
2	$1 / 2 / 12$	Dr. Mike	Alice
2	$1 / 3 / 12$	Dr. Evil	Alice

Audit Log

Patient	Date	Doctor
Alice	$1 / 1 / 12$	Dr. Bob

Appointments

Doctor	Department
Dr. Bob	Pediatrics
Dr. Mike	Pediatrics

Departments

Explanation by Existence of Paths

An access is explained if there exists a path:

- From the data accessed (Patient) to the user accessing the data (User)
- Through other tables/tuples stored in the DB

Lid	Date	User	Patient
1	$1 / 1 / 12$	Dr. Bob	Alice
2	$1 / 2 / 12$	Dr. Mike	Alice
2	$1 / 3 / 12$	Dr. Evil	Alice

Audit Log

Patient	Date	Doctor
Alice	$1 / 1 / 12$	Dr. Bob

Appointments

Doctor	Department
Dr. Bob	Pediatrics
Dr. Mike	Pediatrics

Departments
Why did Dr. Bob access Alice's record?

Explanation by Existence of Paths

An access is explained if there exists a path:

- From the data accessed (Patient) to the user accessing the data (User)
- Through other tables/tuples stored in the DB

	Date	$\sqrt{6}$	Patient	Patient Date Doctor Alice $1 / 1 / 12$ Dr. Bob		
1	1/1/12	Dr. Bob	Alice			
2	1/2/12	Dr. Mike	Alice	Appointments		

Doctor	Department
Dr. Bob	Pediatrics
Dr. Mike	Pediatrics

Because of an
appointment
Departments
Why did Dr. Bob access Alice's record?

Explanation by Existence of Paths

An access is explained if there exists a path:

- From the data accessed (Patient) to the user accessing the data (User)
- Through other tables/tuples stored in the DB

Lid	Date	User	Patient
1	$1 / 1 / 12$	Dr. Bob	Alice
2	$1 / 2 / 12$	Dr. Mike	Alice
2	$1 / 3 / 12$	Dr. Evil	Alice

Audit Log

Patient	Date	Doctor
Alice	$1 / 1 / 12$	Dr. Bob

Appointments

Doctor	Department
Dr. Bob	Pediatrics
Dr. Mike	Pediatrics

Departments
Why did Dr. Mike access Alice's record?

Explanation by Existence of Paths

An access is explained if there exists a path:

- From the data accessed (Patient) to the user accessing the data (User)
- Through other tables/tuples stored in the DB

Explanation by Existence of Paths

An access is explained if there exists a path:

- From the data accessed (Patient) to the user accessing the data (User)
- Through other tables/tuples stored in the DB

Lid	Date	User	Patient
1	$1 / 1 / 12$	Dr. Bob	Alice
2	$1 / 2 / 12$	Dr. Mike	Alice
2	$1 / 3 / 12$	Dr. Evil	Alice

Audit Log

Patient	Date	Doctor
Alice	$1 / 1 / 12$	Dr. Bob

Appointments

Doctor	Department
Dr. Bob	Pediatrics
Dr. Mike	Pediatrics

Departments
Why did Dr. Evil access

Explanation by Existence of Paths

An access is explained if there exists a path:

- From the data accessed (Patient) to the user accessing the data (User)
- Through other tables/tuples stored in the DB

Lid	Date	User	Patient
1	$1 / 1 / 12$	Dr. Bob	Alice
2	$1 / 2 / 12$	Dr. Mike	Alice
2	$1 / 3 / 12$	Dr. Evil	Alice

Audit Log

No path exists,
suspicious access!!

Patient	Date	Doctor
Alice	$1 / 1 / 12$	Dr. Bob

Appointments

Doctor	Department
Dr. Bob	Pediatrics
Dr. Mike	Pediatrics

Departments

Why did Dr. Evil access

3b. Explainable security permissions

- Access policies for social media/smartphone apps can be complex and fine-grained
- Difficult to comprehend for application developers
- Explain "NO ACCESS" decisions by what permissions are needed for access

By clicking "Play Now" above, this app will receive:

- Your basic info [?]
- Your email address
(gmb77@cornell.edu)
- Your birthday
- Your location

This app may post on your behalf, including items you shared, items you needed and more.

Who can see posts this app makes for you on your Facebook timeline: [?]

```
&& Friends -
```

By proceeding, you agree to FarmVille's Terms of Service and Privacy Policy

Example: Base Table

User		
uid	name	email
4	Zuck	zuck@fb.com
10	Marcel	marcel@fb.com
12347	Lucja	lucja@cornell.edu

Example: Security Views

CREATE VIEW V1 AS SELECT * FROM User WHERE uid $=4$

CREATE VIEW V2 AS SELECT uid, name FROM User

CREATE VIEW V3 AS SELECT name, email FROM User

User		
uid	name	email
4	Zuck	zuck@fb.com
10	Marcel	marcel@fb.com
12347	Lucja	lucja@cornell.edu

Example: Security Views

CREATE VIEW V1 AS SELECT * FROM User WHERE uid = 4

CREATE VIEW V2 AS SELECT uid, name FROM User

CREATE VIEW V3 AS SELECT name, email FROM User

User		
uid	name	email
4	Zuck	zuck@fb.com
10	Marcel	marcel@fb.com
12347	Lucja	lucja@cornell.edu

Example: Security Views

CREATE VIEW V1 AS SELECT * FROM User WHERE uid = 4
CREATE VIEW V2 AS SELECT uid, name FROM User
CREATE VIEW V3 AS SELECT name, email FROM User

User		
uid	name	email
4	Zuck	zuck@fb.com
10	Marcel	marcel@fb.com
12347	Lucja	lucja@cornell.edu

Example: Security Views

CREATE VIEW V1 AS SELECT * FROM User WHERE uid $=4$
CREATE VIEW V2 AS SELECT uid, name FROM User

User		
uid	name	email
4	Zuck	zuck@fb.com
10	Marcel	marcel@fb.com
12347	Lucja	lucja@cornell.edu

CREATE VIEW V3 AS SELECT name, email FROM User

Example: Security Policy

CREATE VIEW V1 AS SELECT * FROM User WHERE uid = 4

CREATE VIEW V2 AS SELECT uid, name FROM User

CREATE VIEW V3 AS
SELECT name, email FROM User

User

uid	name	email
4	Zuck	zuck@fb.com
10	Marcel	marcel@fb.com
12347	Lucja	lucja@cornell.edu

Permitted

Not Permitted

Example: Security Policy Decisions

CREATE VIEW V1 AS SELECT * FROM User WHERE uid $=4$

CREATE VIEW V2 AS SELECT uid, name FROM User

CREATE VIEW V3 AS
SELECT name, email FROM User

SELECT name FROM User WHERE uid $=4$

Query issued

 by appUser

uid	name	email
4	Zuck	zuck@fb.com
10	Marcel	marcel@fb.com
12347	Lucja	lucja@cornell.edu

Permitted

Not Permitted

Example: Security Policy Decisions

CREATE VIEW V1 AS SELECT * FROM User WHERE uid $=4$

CREATE VIEW V2 AS SELECT uid, name FROM User

CREATE VIEW V3 AS
SELECT name, email FROM User

SELECT name FROM User WHERE uid $=4$

Query issued

 by app
Example: Security Policy Decisions

CREATE VIEW V1 AS SELECT * FROM User WHERE uid $=4$

CREATE VIEW V2 AS SELECT uid, name FROM User

CREATE VIEW V3 AS SELECT name, email FROM User

SELECT name FROM User WHERE uid $=4$

Query issued by app

Example: Why-Not Explanations

CREATE VIEW V1 AS SELECT * FROM User WHERE uid $=4$

CREATE VIEW V2 AS
SELECT uid, name FROM User

CREATE VIEW V3 AS
SELECT name, email FROM User

v1	v2	v3	Q
\mathbf{x}	\mathbf{x}	\checkmark	\mathbf{x}
\mathbf{x}	\checkmark	\checkmark	\checkmark
\checkmark	\mathbf{x}	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark	\checkmark

SELECT name FROM User WHERE uid $=4$
 Query issued by app

Example: Why-Not Explanations

CREATE VIEW V1 AS SELECT * FROM User WHERE uid $=4$

CREATE VIEW V2 AS SELECT uid, name FROM User

CREATE VIEW V3 AS SELECT name, email FROM User

SELECT name FROM User WHERE uid $=4$

Query issued

 by appWhy-not explanation:
V1 or V2

4. Explanations for User Ratings

[Das et al., 2012]

How to meaningfully explain user rating?

How to meaningfully explain user rating?

- IMDB provides demographic information of the users, but it is limited
- Need a balance between individual reviews (too many) and final aggregate (less informative)

Meaningful User Rating

- Solution:

Explain ratings by leveraging information about users and item attributes (data cube)

OUTPUT

Summary

- Causality is fine-grained (actual cause = single tuple), explanations for DB query answers are coarse-grained (explanation = a predicate)
- There are other application-specific notions of explanations
- Like causality, explanation is defined by intervention

Part 3:

Related Topics
 and
 Future Directions

Part 3.a:

- RELATED TOPICS

Related Topics

- Causality/explanations:
- how the inputs affect and explain the output(s)
- Other formalisms in databases that capture the connection between inputs and outputs:

1. Provenance/Lineage
2. Deletion Propagation
3. Missing Answers/Why-Not

1. (Boolean) Provenance/Lineage

- Tracks the source tuples that produced an output tuple and how it was produced

R				
r1	a1	b1		b1
r2	a1	b2		b2
r3	a2	b2		b2
T =		a1	c1	r1s1 + r2s2
$R め S$		a1	c2	r2s3
		a2	c2	r3s3

- Why/how is T(a1, c1) produced?
- Ans: Either
by r 1 AND s 1
OR
by r2 AND s2

Provenance vs. Causality/Explanations

- Provenance is a useful tool in finding causality/explanations e.g., [Meliou et al., 2010]

Provenance vs. Causality/Explanations

- Provenance is a useful tool in finding causality/explanations e.g., [Meliou et al., 2010]
- But, causality/explanations go beyond simple provenance
- Causality points out the responsibility of each tuple in producing the output that helps ranking input tuples

Provenance vs. Causality/Explanations

- Provenance is a useful tool in finding causality/explanations e.g., [Meliou et al., 2010]
- But, causality/explanations go beyond simple provenance
- Causality points out the responsibility of each tuple in producing the output that helps ranking input tuples
- Explanations return high-level abstractions as predicates which also help in comparing two or more output aggregate values

Provenance vs. Causality/Explanations

- Provenance is a useful tool in finding causality/explanations e.g., [Meliou et al., 2010]
- But, causality/explanations go beyond simple provenance
- Causality points out the responsibility of each tuple in producing the output that helps ranking input tuples
- Explanations return high-level abstractions as predicates which also help in comparing two or more output aggregate values

Example

For questions of the form
"Why is avg(temp) at time 12 pm so high?"
"Why is avg(temp) at time 12 pm higher than that at time 11 am?"

Provenance returns individual tuples, whereas a predicate is more informative:
"Sensor = 3"

2. Deletion propagation

- An output tuple is to be deleted
- Delete a set of source tuples to achieve this
- Find a set of source tuples,
having minimum side effect in
- output (view): delete as few other output tuples as possible, or
- source: delete as few source tuples as possible
[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: $\{r 1, s 1\} \times\{r 2, s 2\}$

[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: $\{r 1, s 1\} \times\{r 2, s 2\}$

			Delete $\{\mathbf{r} 1, \mathrm{r} 2\}$
a1	c1	r1s1 + r2s2	
a1	c2	r2s3	
a2	c2	r3s3	

[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: $\{r 1, s 1\} \times\{r 2, s 2\}$

[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: $\{r 1, s 1\} \times\{r 2, s 2\}$

[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: $\{r 1, s 1\} \times\{r 2, s 2\}$

$T=$
$R \bowtie S$

d1	c1	r1s1 + r2s2	
a1	c2	r2s3	
a2	c2	r3s3	

Delete $\{r 1, r 2\}$
[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: $\{r 1, s 1\} \times\{r 2, s 2\}$

Delete $\{r 1, r 2\}$
[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: $\{r 1, s 1\} \times\{r 2, s 2\}$

Delete $\{r 1, r 2\}$ View Side Effect = 1 as $T(a 1, c 2)$ is also deleted
[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: $\{r 1, s 1\} \times\{r 2, s 2\}$

[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: $\{r 1, s 1\} \times\{r 2, s 2\}$

[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: $\{r 1, s 1\} \times\{r 2, s 2\}$

[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: View Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: $\{r 1, s 1\} \times\{r 2, s 2\}$

[Buneman et al. 2002] [Cong et al. 2011] [Kimelfeld et al. 2011]

Deletion Propagation: Source Side Effect

- To delete T(a1, c1)
- Need to delete one of 4 combinations: $\{r 1, s 1\} \times\{r 2, s 2\}$

Source side effect = \#source tuples to be deleted = 2 (optimal for any of these four combinations)

Deletion Propagation vs. Causality

- Deletion propagation with source side effects:
- Minimum set of source tuples to delete that deletes an output tuple
- Causality:
- Minimum set of source tuples to delete that together with a tuple t deletes an output tuple
- Easy to show that causality is as hard as deletion propagation with source side effect
(exact relationship is an open problem)

3. Missing Answers/Why-Not

- Aims to explain why a set of tuples does not appear in the query answer

3. Missing Answers/Why-Not

- Aims to explain why a set of tuples does not appear in the query answer
- Data-based (explain in terms of database tuples)
- Insert/update certain input tuples such that the missing tuples appear in the answer
[Herschel-Hernandez, 2009] [Herschel et al., 2010] [Huang et al., 2008]

3. Missing Answers/Why-Not

- Aims to explain why a set of tuples does not appear in the query answer
- Data-based (explain in terms of database tuples)
- Insert/update certain input tuples such that the missing tuples appear in the answer
[Herschel-Hernandez, 2009] [Herschel et al., 2010] [Huang et al., 2008]
- Query-based (explain in terms of the query issued)
- Identify the operator in the query plan that is responsible for excluding the missing tuple from the result [Chapman-Jagadish, 2009]
- Generate a refined query whose result includes both the original result tuples as well as the missing tuples
[Tran-Chan, 2010]

3. Why-Not vs. Causality/Explanations

- In general, why-not approaches use intervention
- on the database, by inserting/updating tuples
- or, on the query, by proposing a new query

3. Why-Not vs. Causality/Explanations

- In general, why-not approaches use intervention
- on the database, by inserting/updating tuples
- or, on the query, by proposing a new query
- Future direction:

A unified framework for explaining missing tuples or high/low aggregate values using why-not techniques

- e.g. [Meliou et al., 2010] already handles missing tuples

Other Related Work

- OLAP/Data cube exploration
e.g. [Sathe-Sarawagi, 2001] [Sarawagi, 2000] [Sarawagi-Sathe, 2000]
- Get insights about data by exploring along different dimensions

Other Related Work

- OLAP/Data cube exploration
e.g. [Sathe-Sarawagi, 2001] [Sarawagi, 2000] [Sarawagi-Sathe, 2000]
- Get insights about data by exploring along different dimensions
- Connections between causality, diagnosis, repairs, and view-updates [Bertossi-Salimi, 2014] [Salimi-Bertossi, 2014]

Other Related Work

- OLAP/Data cube exploration
e.g. [Sathe-Sarawagi, 2001] [Sarawagi, 2000] [Sarawagi-Sathe, 2000]
- Get insights about data by exploring along different dimensions
- Connections between causality, diagnosis, repairs, and view-updates [Bertossi-Salimi, 2014] [Salimi-Bertossi, 2014]
- Causal inference and learning for computational advertising e.g. [Bottou et al., 2013]
- Uses causal inference and intervention in controlled experiments for better ad placement in search engines

Other Related Work

- OLAP/Data cube exploration
e.g. [Sathe-Sarawagi, 2001] [Sarawagi, 2000] [Sarawagi-Sathe, 2000]
- Get insights about data by exploring along different dimensions
- Connections between causality, diagnosis, repairs, and view-updates [Bertossi-Salimi, 2014] [Salimi-Bertossi, 2014]
- Causal inference and learning for computational advertising e.g. [Bottou et al., 2013]
- Uses causal inference and intervention in controlled experiments for better ad placement in search engines
- Explanations in AI [Pacer et al., 2013] [Pearl, 1988] [Yuan et al., 2011]
- Given a set of observed values of variables in a Bayesian network, find a hypothesis (an assignment to other variables) that best explains the observed values

Other Related Work

- OLAP/Data cube exploration
e.g. [Sathe-Sarawagi, 2001] [Sarawagi, 2000] [Sarawagi-Sathe, 2000]
- Get insights about data by exploring along different dimensions
- Connections between causality, diagnosis, repairs, and view-updates [Bertossi-Salimi, 2014] [Salimi-Bertossi, 2014]
- Causal inference and learning for computational advertising e.g. [Bottou et al., 2013]
- Uses causal inference and intervention in controlled experiments for better ad placement in search engines
- Explanations in AI [Pacer et al., 2013] [Pearl, 1988] [Yuan et al., 2011]
- Given a set of observed values of variables in a Bayesian network, find a hypothesis (an assignment to other variables) that best explains the observed values
- Lamport's causality [Lamport, 1978]
- to determine the causal order of events in distributed systems

Part 3.b:

- FUTURE DIRECTIONS

Extending causality

- Study broader query classes
- e.g. for aggregate queries, can we define counterfactuals/responsibility in terms of increasing/decreasing the value of an output tuple instead of deleting it totally?
- Analyze causality under the presence of constraints
- E.g., FDs restrict the lineage expressions that a query can produce. How does this affect complexity?

Refining the definition of cause

- Do we need preemption?
- Preemption can model intermediate results/views that perhaps cannot be modified
- Some complexity of the Halpern-Pearl definition may be valuable
- Causality/explanations for queries:
- Looking for causes/explanations in a query, rather than the data

Find complex explanations efficiently

- Complex explanations
- Beyond simple predicates,

$$
\text { e.g. avg(salary) } \geq \text { avg(expenditure) }
$$

- Efficiently explore the huge search space of predicates
- Pre-processing/pruning to return explanations in real time

Ranking and Visualization

- Study ranking criteria
- for simple, general, and diverse explanations
- Visualization and Interactive platform
- View how the returned explanations affect the original answers
- Filter out uninteresting explanations

Conclusions

- We need tools to assist users understand "big data". Providing with causality/explanation will be a critical component of these tools

Conclusions

- We need tools to assist users understand "big data". Providing with causality/explanation will be a critical component of these tools
- Causality/explanation is at the intersection of AI, data management, and philosophy

Conclusions

- We need tools to assist users understand "big data". Providing with causality/explanation will be a critical component of these tools
- Causality/explanation is at the intersection of AI, data management, and philosophy
- This tutorial offered a snapshot of current state of the art in causality/explanation in databases; the field is poised to evolve in the near future

Conclusions

- We need tools to assist users understand "big data". Providing with causality/explanation will be a critical component of these tools
- Causality/explanation is at the intersection of AI, data management, and philosophy
- This tutorial offered a snapshot of current state of the art in causality/explanation in databases; the field is poised to evolve in the near future
- All references are at the end of this tutorial
- The tutorial is available to download from www.cs.umass.edu/~ameli and homes.cs.washington.edu/ \sim sudeepa

Acknowledgements

- Authors of all papers
- We could not cover many relevant papers due to time limit
- Big thanks to Gabriel Bender, Mahashweta Das, Daniel Fabbri, Nodira Khoussainova, and Eugene Wu for sharing their slides!
- Partially supported by NSF Awards IIS-0911036 and CCF-1349784.

References

1. [Bender et al., 2014] G. Bender, L. Kot, J. Gehrke: Explainable security for relational databases. SIGMOD Conference, pages1411-1422, 2014.
2. [Bertossi-Salimi, 2014] L. E. Bertossi, B. Salimi: Unifying Causality, Diagnosis, Repairs and View-Updates in Databases. CoRR abs/1405.4228, 2014.
3. [Bottou et al., 2013] L. Bottou, J. Peters, J. Quiñonero Candela, D. X. Charles, M. Chickering, E. Portugaly, D. Ray, P. Simard, E. Snelson: Counterfactual reasoning and learning systems: the example of computational advertising. Journal of Machine Learning Research 14(1): 3207-3260, 2013.
4. [Buneman et al., 2001] P. Buneman, S. Khanna, and W. C. Tan: A characterization of data provenance. ICDT, pages 316-330, 2001.
5. [Buneman et al., 2002] P. Buneman, S. Khanna, and W. C. Tan: On propagation of deletions and annotations through views. PODS, pages 150-158, 2002.
6. [Chalamalla et al., 2014] A. Chalamalla, I. F. Ilyas, M. Ouzzani, P. Papotti: Descriptive and prescriptive data cleaning. SIGMOD, pages 445-456, 2014.
7. [Chapman-Jagadish, 2009] A. Chapman, H. V. Jagadish: Why not? SIGMOD, pages 523-534, 2009.
8. [Cheney et al., 2009] J. Cheney, L. Chiticariu, and W. C. Tan: Provenance in databases: Why, how, and where. Foundations and Trends in Databases, 1(4):379-474, 2009.
9. [Chockler-Halpern, 2004] H. Chockler and J. Y. Halpern: Responsibility and blame: A structural-model approach. J. Artif. Intell. Res. (JAIR), 22:93-115, 2004.
10. [Cong et al., 2011] G. Cong, W. Fan, F. Geerts, and J. Luo: On the complexity of view update and its applications to annotation propagation. TKDE, 2011.

References

11. [Cui et al., 2000] Y. Cui, J. Widom, and J. L. Wiener: Tracing the lineage of view data in a warehousing environment. ACM Trans. Database Syst., 25(2):179-227, 2000.
12. [Das et al., 2012] M. Das, S. Amer-Yahia, G. Das, and C. Yu. Mri: Meaningful interpretations of collaborative ratings. PVLDB, 4(11):1063-1074, 2011.
13. [Eiter-Lukasiewicz , 2002] T. Eiter and T. Lukasiewicz. Causes and explanations in the structural-model approach: Tractable cases: UAI, pages 146-153. Morgan Kaufmann, 2002.
14. [Fabbri-LeFevre, 2011] D. Fabbri and K. LeFevre: Explanation-based auditing. Proc. VLDB Endow., 5(1):112, Sept. 2011.
15. [Green et al., 2007] T. J. Green, G. Karvounarakis, and V. Tannen: Provenance semirings. PODS, pages 3140, 2007.
16. [Hagmeyer, 2007] Y. Hagmayer, S. A. Sloman, D. A. Lagnado, and M. R. Waldmann: Causal reasoning through intervention. Causal learning: Psychology, philosophy, and computation, pages 86-100, 2007.
17. [Halpern-Pearl, 2001] J. Y. Halpern and J. Pearl: Causes and explanations: A structural-model approach: Part 1: Causes. UAI, pages 194-202, 2001.
18. [Halpern-Pearl, 2005] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach. Part I: Causes. Brit. J. Phil. Sci., 56:843-887, 2005. (Conference version in UAI, 2001).
19. [Halpern, 2008] J. Y. Halpern. Defaults and Normality in Causal Structures: KR, pages 198-208, 2008
20. [Herschel-Hernandez, 2009] M. Herschel, M. A. Hernandez, and W. C. Tan. Artemis: A system for analyzing missing answers. PVLDB, 2(2):1550-1553, 2009.

References

21. [Herschel et al., 2010] M. Herschel and M. A. Hernandez: Explaining missing answers to SPJUA queries. PVLDB, 3(1):185-196, 2010.
22. [Huang et al., 2008] J. Huang, T. Chen, A. Doan, and J. F. Naughton: On the provenance of non-answers to queries over extracted data. PVLDB, 1(1):736-747, 2008.
23. [Hume, 1748] D. Hume. An enquiry concerning human understanding: Hackett, Indianapolis, IN, 1748.
24. [Kanagal et al, 2012] B. Kanagal, J. Li, and A. Deshpande: Sensitivity analysis and explanations for robust query evaluation in probabilistic databases. SIGMOD, pages 841-852, 2011.
25. [Khoussainova et al., 2012] N. Khoussainova, M. Balazinska, and D. Suciu. Perfxplain: debugging mapreduce job performance. Proc. VLDB Endow., 5(7):598-609, Mar. 2012.
26. [Kimelfeld et al. 2011] B. Kimelfeld, J. Vondrak, and R. Williams: Maximizing conjunctive views in deletion propagation. PODS, pages 187-198, 2011.
27. [Lamport, 1978] L. Lamport. Time, clocks, and the ordering of events in a distributed system: Commun. ACM, 21(7):558-565, July 1978.
28. [Lewis, 1973] D. Lewis. Causation: The Journal of Philosophy, 70(17):556-567, 1973.
29. [Maier et al., 2010] M. E. Maier, B. J. Taylor, H. Oktay, and D. Jensen: Learning causal models of relational domains. AAAI, 2010.
30. [Mayrhofer, 2008] R. Mayrhofer, N. D. Goodman, M. R. Waldmann, and J. B. Tenenbaum: Structured correlation from the causal background. Cognitive Science Society, pages 303-308, 2008.

References

31. [Meliou et al., 2010] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu: The complexity of causality and responsibility for query answers and non-answers. PVLDB, 4(1):34-45, 2010.
32. [Meliou et al., 2010a] A. Meliou, W. Gatterbauer, K. F. Moore, D. Suciu: WHY SO? or WHY NO? Functional Causality for Explaining Query Answers. MUD, pages 3-17, 2010.
33. [Meliou et al., 2011] A. Meliou, W. Gatterbauer, S. Nath, and D. Suciu: Tracing data errors with viewconditioned causality. SIGMOD Conference, pages 505-516, 2011.
34. [Menzies, 2008] P. Menzies. Counterfactual theories of causation: Stanford Encylopedia of Philosophy, 2008.
35. [Pacer et al., 2013] M. Pacer, T. Lombrozo, T. Griths, J. Williams, and X. Chen: Evaluating computational models of explanation using human judgments. UAI, pages 498-507, 2013.
36. [Pearl, 1988] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publishers Inc., 1988.
37. [Pearl, 2000] J. Pearl. Causality: models, reasoning, and inference: Cambridge University Press, 2000.
38. [Roy-Suciu, 2014] S. Roy, D. Suciu: A formal approach to finding explanations for database queries: SIGMOD Conference, pages 1579-1590, 2014
39. [Salimi-Bertossi, 2014] Babak Salimi, Leopoldo E. Bertossi: Causality in Databases: The Diagnosis and Repair Connections. CoRR abs/1404.6857, 2014
40. [Sarawagi, 2000] S. Sarawagi: User-Adaptive Exploration of Multidimensional Data: VLDB: pages 307316, 2000

References

41. [Sarawagi-Sathe, 2000] S. Sarawagi and G. Sathe. i3: Intelligent, interactive investigation of olap data cubes: SIGMOD, 2000.
42. [Sathe-Sarawagi, 2001] G. Sathe, S. Sarawagi: Intelligent Rollups in Multidimensional OLAP Data. VLDB, pages 531-540, 2001
43. [Schaffer, 2000] J. Schaffer: Trumping preemption. The Journal of Philosophy, pages 165-181, 2000
44. [Silverstein et al., 1998] C. Silverstein, S. Brin, R. Motwani, J. D. Ullman: Scalable Techniques for Mining Causal Structures. VLDB: pages 594-605, 1998
45. [Tran-Chan, 2010] Q. T. Tran and C.-Y. Chan: How to conquer why-not questions. SIGMOD, pages 15-26, 2010.
46. [Woodward, 2003] J. Woodward. Making Things Happen: A Theory of Causal Explanation. Oxford scholarship online. Oxford University Press, 2003.
47. [Wu-Madden, 2013] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries. PVLDB, 6(8), 2013.
48. [Yuan et al., 2011] C. Yuan, H. Lim, and M. L. Littman: Most relevant explanation: computational complexity and approximation methods. Ann. Math. Artif. Intell., 61(3):159\{183,2011.

Thank you!

Questions?

[^0]: Judea Pearl (1936-)

