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We need to understand unexpected or
Interesting behavior of systems,
experiments, or query answers to gain
knowledge or troubleshoot
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Inconsistent performance

J

Why is there such variability during this time interval
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Understanding results
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Understanding results
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Causality In science

A Science seeks to understan
and explain physical
observations -

i WhyR2S&ay Qi GKS Tge
I What if| make the beam half
as thick, will it carry the load?

I Howdo | shape the beam so
it will carry the load?




Causality In science

A Science seeks to understan
and explain physical
observations
i What if| make the beam half ————~~

as thick, will it carry the load?

i Howdo | shape the beam so
it will carry the load?

A We now have similar
guestions in databases!




What Is causality?

A Does acceleration cause the force?
A Does the force cause the acceleration?
A Does the force cause the mass?



What Is causality?

A Does acceleration cause the force?
A Does the force cause the acceleration?
A Does the force cause the mass?

We cannot derive causality from data, yet we have developed a
perception of what constitutes a cause.
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Some history

Causation is a matter of perception

Weremember seeing thikame, and feeling a
sensation calletheat; without further ceremony, we
call the onecauseand the othereffect
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Some history

Causation is a matter of perception

Weremember seeing thikame, and feeling a
sensation calletheat without further ceremony, we
call the onecauseand the othereffect

David Hume (1721776) Statistical ML

[ Forget causation! Correlation is all you should ask 1

Karl Pearson (185¥936)

A mathematical definition of causality

on a network of known, physical, causal relationships

Forget empirical observations! Define causality ba%ed
Judea Pearl (193p ¢




Tutorial overview

Part 1. Causality

A Basic definitions
A Causality in Al
A Causality in DB

Part 2: Explanations

A Explanations for DB quer
answers

A Applicationspecific
approaches

Part 3: Related topics and Future directions

A Connections to lineage/provenance, deletion
propagation, and missing answers

A Future directions




Part 1: Causality

a. Basic Definitions
b. Causality in Al
c. Causality in DB
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ABASIC DEFINITIONS



Basic definitions: overview

A Modeling causality
I Causal networks

A Reasoning about causality
I Counterfactual causes
I Actual causes (Halpern & Pearl)

A Measuring causality
I Responsibility



[Pearl, 2000]

Causal networks

A Causal structural models: A

1
I Variables: A, B, Y
i Structural equations: Y =AvB . Y=AVEB
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[Pearl, 2000]

Causal networks

A Causal structural models: A=1
I Variables: A, B, Y
I Structural equations: Y =Av B - Y=AVB

A Modeling problems:
I E.g., A bottle breaks Iif either Alice or Bob throw a rock at it

I Endogenous variables:
A Alice throws a rock (A)
A Bob throws a rock (B)
A The bottle breaks (Y)

I Exogenous variables:
Al t A0SQa IAYI A4LISSR 2F UKS gAYF



[Woodward, 2003]Hagmeyer2007]

Intervention / contingency

A External interventions modify the structural
equations or values of the variables.

1
Y =AVY;
O
1 Y, =AB

A

B



[Woodward, 2003]Hagmeyer2007]

Intervention / contingency

A External interventions modify the structural
equations or values of the variables.

1 A=1
Y =AVY; O\f):,awyl
O o/,o
1 Y, =AB B=1o Y =0

Intervention onY;: Y;=0

A

B




[Hume, 1748]Menzies 2008] [Lewis, 1973

Counterfactuals

A If not Athen not ,
iLy 04KS 6aSyosS 2F¥ I Ol
C = AN B, A=1ANEB =1 «— Both counterfactual
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[Hume, 1748]Menzies 2008] [Lewis, 1973

Counterfactuals

A If not Athen not ,
iLy 04KS 6aSyosS 2F¥ I Ol
C = AN B, A=1ANEB =1 «— Both counterfactual

A Problem: Disjunctive causes
iLT 't A0S R2SayQi U0KNRSg
(because of Bob)
I Neither Alice nor Bob are counterfactual causes

C=AVB, A=1AB =1 «— No counterfactual causes



[HalpernPearl, 2001]HalpernPearl, 2005]

Actual causes

[simplification]
A variable X is aactual caus®f an effect Y If

there exists a contingency that makes X
counterfactual for Y.

C=AVvB, A=1AB =1 «— Aisacause under the
contingency B=0
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4 Example 1
Y — X1 A\ X2
X.=1 is counterfactual for Y=1

\_

X1:X2:]_:>Y:]_
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4 Example 1 ™
Y = X1 AN Xo X =X,=1=Y =1
X.=1 is counterfactual for Y=1

\_

/
/Examplez I
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X,=1 isnot counterfactual for Y=1

\_%=1is aractualcause for Y=1, with contingency=R )
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/Examplel
Y = X1 AN X X1i=Xo=1=Y =1
X;=1 is counterfactual for Y=1

\_

/Examplez
Y =X; VX, Xi=Xo=1=Y=1

X,=1 isnot counterfactual for Y=1

lezl IS aractualcause for Y=1, with contingency-R

/Example 3

X,=1 isnot counterfactual for Y=1

KX1:1 Isnot an actual cause for Y=1

/
~

X1=Xo=X3=1=Y =1

/




[ChocklerHalpern 2004]

Responsibility

A measure of the degree of causality

1

— . size of the
1 _I_ INIne |F| contingencyset

p
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[ChocklerHalpern 2004]

Responsibility

A measure of the degree of causality

1

IO — . size of the
1 + ININe |F| 7 contingencyset
/ Example \
Y=AAN(BVC) A=B=C=1=Y=1

A=1 is counterfactual for Y=L ) m

B=1 is an actual cause for Y=1, with contingency(C=D5)

\_ /
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Basic definitions: summary

A Causal networkmodel the known variables and causal
relationships

A Counterfactual causdsave direct effect to an outcome

A Actual causesxtend counterfactual causes and
express causal influence in more settings

A Responsibilityneasures the contribution of a cause to
an outcome



ACAUSALITY IN Al



Causality in Al: overview

A Actual causes: going deeper into the Halpern
Pearl definition

A Complications of actual causality and
solutions

A Complexity of inferring actual causes



Dealing with complex settings

A The definition of actual causes was designed
to capture complex scenarios

 Permissible contingencies N

Not all contingencies are valid => Restrictions In
the HalpernPearl definition of actual causes.

-
4 Preemption

AN

Model priorities of events => one event may

preemptanother
N /




[HalpernPearl, 2001]HalpernPearl, 2005]

Permissible contingencies

Y=Y;vC

1 f A0S f2FRa . 20Q&a 3Idzy
Bob shoots
Charlie loads and shoots his own gun

the prisoner dies

23



[HalpernPearl, 2001]HalpernPearl, 2005]

Permissible contingencies

In the contingency {A=1,B=1,C=0}, A is
counterfactual, but should it be a cause/?

Y=Y;vC
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Y: the prisoner dies
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[HalpernPearl, 2001]HalpernPearl, 2005]

Permissible contingencies

In the contingency {A=1,B=1,C=0}, A is
counterfactual, but should it be a cause/?

A: 1 TA0S t2FRa . 206Qa 3Idzy
B: Bob shoots

C. Charlie loads and shoots his own gun

Y: the prisoner dies

Additional restriction in the HP definition:
Nodes in the causal path should not change value




[Schaffer, 2000]HalpernPearl, 2001]HalpernPearl, 2005

Causal priority: preemption

S
|

Y=AVB

B=1

A: Alice throws a rock
B: Bob throws a rock
Y: the bottle breaks
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[Schaffer, 2000]HalpernPearl, 2001]HalpernPearl, 2005
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[Schaffer, 2000]HalpernPearl, 2001]HalpernPearl, 2005

Causal priority: preemption

AVB=AV AB

S
|

N
|

o
N
l

Y=AVY;

Y=AVB _
B=1 B=1 Y1=AB

A

Alice throws a rock
Bob throws a rock
the bottle breaks Yi=0—Y;=1
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[Schaffer, 2000]HalpernPearl, 2001]HalpernPearl, 2005

Causal priority: preemption

AVB=AV AB

S
|

N
|

o
N
l

Y=AVY;

Y=AVB _
B=1 B=1 Y1=AB

A: Alice throws a rock
B: Bob throws a rock
Y: the bottle breaks Yi=0—Y; =1

Even though the structural equations for Y are equivalent, the two
causal networks result in different interpretations of causality




[Meliou et al., 2010a]

Complications

A Intricacy

I The definition has been used incorrectly in
literature: [Chockler2008]



[Meliou et al., 2010a]

Complications

A Intricacy

I The definition has been used incorrectly in
literature: [Chockler2008]

A Dependency on graph structure and syntax



[Meliou et al., 2010a]

Complications

A Intricacy

I The definition has been used incorrectly in
literature: [Chockler2008]

A Dependency on graph structure and syntax

A Counterintuitive results



[Meliou et al., 2010a]

Complications
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Shock C
B=A




[Meliou et al., 2010a]

Complications

A Intricacy

I The definition has been used incorrectly in
literature: [Chockler2008]

A Dependency on graph structure and syntax

A Counterintuitive results

Shock C Network expansion

/\ A=17 A 17@

C=(A=B) Y=Y,VB Yo=B Y=Y,VY,




Defaults

A World: a set of va

A Rank:each world
rank, the less like
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Defaults

A World: a set of va

A Rank:each world
rank, the less like

[Halpern, 2008]

and normality

ues for all the variables
nas a rank; the higher the

y the world

A Normality: can only pick contingencies of
lower rank (more likely worlds)

Addresses some of the complications, but require
ordering of possible worlds.




[Eiter Lukasiewic2002]

Complexity of causality
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Actual cause
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[Eiter Lukasiewic2002]

Complexity of causality

Counterfactual caus

Actual cause

PTIME

NRcomplete

Proof. Reduction from SAT.

Given F, F matisfiabldff X is aractual cause for YXF

For nonbinary models3; -complete




[Eiter Lukasiewic2002]

Tractable cases

1. Causal trees



