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ABSTRACT
We develop a compact and efficient reachability labeling
scheme for answering provenance queries on workflow runs
that conform to a given specification. Even though a work-
flow run can be structurally more complex and can be ar-
bitrarily larger than the specification due to fork (parallel)
and loop executions, we show that a compact reachability
labeling for a run can be efficiently computed using the fact
that it originates from a fixed specification. Our labeling
scheme is optimal in the sense that it uses labels of logarith-
mic length, runs in linear time, and answers any reachabil-
ity query in constant time. Our approach is based on using
the reachability labeling for the specification as an effective
skeleton for designing the reachability labeling for workflow
runs. We also demonstrate empirically the effectiveness of
our skeleton-based labeling approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
scientific databases

General Terms
Algorithms, Performance

1. INTRODUCTION
Efficiently maintaining the provenance of data produced

by scientific workflow systems is of great current interest.
Using provenance information, scientists can examine the
data, parameter settings, and analysis tools that were used
in an “in-silico” experiment to produce a good data result,
or determine which downstream data objects were affected
by a bad data result. Tracking such provenance information
entails answering reachability queries on a directed acyclic
graph (DAG) which encodes the dependencies between data
and modules in a workflow execution.

As observed in [8, 11], two immediate approaches to an-
swering reachability queries – using graph traversals and pre-
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computing the transitive closure – are prohibitively expen-
sive for large graphs. A better approach is to use reachability
labels, i.e., to assign each vertex in the graph a label such
that by comparing only the labels of any two vertices, we can
decide if one can reach the other. However, the effectiveness
of this approach crucially depends on the ability to develop
a compact and efficient labeling scheme, where compactness
refers to the space used by the labels, and efficiency refers to
the time complexity of creating and comparing the labels.

Motivated by applications in XML database systems, sev-
eral compact and efficient labeling schemes for trees have
been developed; see, for example, [15, 13]. These label-
ing schemes are generally considered to be optimal in the
sense that they use labels of logarithmic length, run in lin-
ear time, and answer queries in constant time. In contrast,
any labeling scheme for general DAGs may require labels of
linear length (in the number of vertices), even if arbitrary
construction and query time are allowed.

However, workflow executions are not arbitrary DAGs:
Each execution (a.k.a. run) of a workflow follows the same
basic structure as the directed graph representing its speci-
fication, but may become much larger due to fork (parallel)
and loop executions. Building on this observation, we pro-
pose a skeleton-based labeling scheme, that uses the reacha-
bility labeling for the specification for designing the reacha-
bility labeling for workflow runs. Our approach labels a run
in two phases: (1) label its specification using any labeling
scheme for directed graphs, and (2) extend the reachability
labels on the specification (called the skeleton labels) with
additional run-time information about the forking and loop-
ing behavior to label the run.
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Figure 1: Workflow Example

As an example, consider the workflow specification and
one of its runs shown in Figure 1, in which vertices represent
modules (a.k.a. tasks) and edges indicate potential data flow
between the modules. In the specification, the dotted oval
around b and c indicates a fork and the dotted backarrow
from c to b a loop. In the run, the fork is executed twice in
parallel; in one fork copy, the loop is executed twice, while
in the other fork copy it is executed only once.1 Edges in
the run are also annotated with xi’s, indicating data that
was created by the first module and passed to the second.
1A realistic run may execute the fork and loop hundreds of times.
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To illustrate the approach, consider the following three
provenance queries: (1) Does x8 (output of c3) depend on
x1 (input to b1)? Note that we need to check if c3 is reach-
able from b1. The answer is ‘no’, since b1 and c3 are in
parallel fork copies. This would be encoded by the extended
labels, and skeleton labels would not be checked; (2) Does
x4 (output of b2) depend on x2 (input to c1)? The answer
is ‘yes’ since, despite the fact that in the specification b is
not reachable from c, c1 and b2 are in successive loop itera-
tions. This would again be encoded by the extended labels;
and (3) Does x3 (output of c1) depend on x1 (input to b1)?
Given that b1 and c1 are in the same fork and loop copy, c1
is reachable from b1 iff c is reachable from b. This query can
therefore be answered using the skeleton labels.

At first glance it would appear that extending skeleton
labels to workflow runs is straightforward as long as unique
process ids are given for different executions of the same
module. But the example above shows that the reasoning
must take into account the hierarchy of nested forks and
loops within which the module execution occurs. Note that
it is non-trivial to encode the interaction between nested fork
and loop executions using only labels of logarithmic length;
even a unique process id takes that much space. Our pri-
mary technical contribution is to design logarithmic length
labels for the run in linear time, and, using these labels along
with the given skeleton labels, answer reachability queries
in constant time. Furthermore, we extract the hierarchy of
fork and loop executions from the run graph in linear time,
so our approach works even if no additional information is
available to identify each fork and loop copy in the run.

The effectiveness of our skeleton-based labeling approach
follows from three observations: First, the size of the spec-
ification is typically much smaller than the size of a run.
Therefore, the specification can be efficiently labeled using
short labels. Second, once a workflow is created it will be
executed repeatedly (using different parameter settings or
data inputs). Therefore, the cost (both space and construc-
tion time) of labeling a specification can be amortized over a
large number of runs. Third, using our algorithm, reachabil-
ity queries on the run may frequently be answered using only
the extended labels without comparing the skeleton labels.
Therefore, our approach is effective even when reachability
queries on the specification are slow.

Contributions. The contributions of this paper are as fol-
lows. First, we propose a two-phase labeling scheme for
workflows with well-nested forks and loops, which extends
skeleton labels on the specification to labels on a run by cap-
turing fork and loop executions. Second, we show that the
scheme is compact and efficient, yielding logarithmic size la-
bels that are created in linear time and which can be used
to answer reachability queries in constant time. The scheme
is thus optimal for labeling runs that conform to a given
specification; it in fact matches the bounds achievable for
trees even though runs can have an arbitrarily more com-
plex network structure. Third, we extend the reachability
labels to data, and show how those labels can be used to
answer provenance queries which test dependencies between
data or between data and modules. Finally, we perform ex-
tensive experimental evaluations on both real and synthetic
datasets. The results empirically validate our complexity
analysis, and show that our skeleton-based labeling scheme
is robust against the approach used for labeling the under-
lying specification.

Paper Organization. Related work is discussed in Sec-
tion 2. Section 3 introduces the workflow model and formu-
lates the reachability labeling problem. Section 4 presents
and analyzes the skeleton-based labeling scheme. Section 5
outlines a linear time algorithm that is used by our labeling
scheme to calculate the execution plan and context. Sec-
tion 6 extends the labeling techniques to answer the data
provenance. Issues of labeling the specification are discussed
in Section 7, followed by experimental results in Section 8.

2. RELATED WORK
The reachability labeling problem for trees has been ex-

tensively studied. The well-known interval scheme was first
proposed by [15], which uses labels of length at most 2 logn
bits, where n is the number of nodes in the tree. A consid-
erable amount of work [1, 16, 3] has been devoted to reduce
the label length. [13] also proposed a prefix scheme which,
though not theoretically best, is likely to be the winner for
labeling XML files in practice. Note that an obvious lower
bound for maximum label length is logn, however, the tight
lower bound for this problem remains open.

The reachability labeling problem for general graphs has
also attracted a lot of attention. Existing approaches fall
into three categories: Chain Decomposition [10], Tree Cover
[2] and 2-Hop [6]. Other variants of Tree Cover include La-
bel+SSPI [5], Dual Labeling [18] and GRIPP [17]. The most
recent work hybridizes three main labeling techniques: Path-
Tree Cover [12] combines Chain Decomposition with Tree
Cover; and 3-Hop [11] combines Chain Decomposition with
2-Hop. A detailed comparison is available in [11]. Thus
existing research tries to find a good balance among label
length (i.e., index size), construction time and query time.
Note that encoding general directed graphs may require la-
bels of length Ω(n) bits, where n is the number of vertices,
even if we allow arbitrary construction and query time.

To provide efficient provenance storage and queries in work-
flow systems, [4] identifies several factorization and inheri-
tance techniques. [8] proposes a reachability labeling scheme
to encode the dependency graph of a workflow execution by
transforming a general graph into a tree and then applying
the interval scheme [15]. The problem with this approach is
that the size of the transformed tree may be exponential in
the size of the original graph.

3. MODEL AND PROBLEM STATEMENT
We start with an informal description of our workflow

model in Section 3.1 before formalizing in Section 3.2. In
Section 3.3 we formulate the reachability labeling problem,
and summarize the main result of this paper.

3.1 Workflow Model Description
Our workflow model has two components: A workflow

specification defines the control and data flow between a set
of modules, and serves as a template for executions; an exe-
cution of a workflow is called a workflow run. Both are rep-
resented by directed graphs, in which each vertex denotes
a module, and each edge denotes a data channel associated
with a set of data items. For the purpose of this paper,
we treat the data item as a logical data unit used by the
workflow, and the module as a black box that takes a set of
data items as input and produces a set of data items as out-
put. A data channel is directed from a module u to another
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module v if the associated data items are generated by u as
output and then used by v as input. This graph captures
the dependency between modules and data items.

To present our main labeling techniques, we first study a
simplified workflow model which considers only the control
flow between modules (i.e., vertices) and ignores the data
flow over data channels (i.e., edges). Consequently, only
vertices in the graph are labeled with their module names.
We will extend the model to include data flow in Section 6.

Workflow Specification. A workflow specification is a
directed acyclic graph whose vertices are labeled with unique
module names. Without any loss of generality, we assume
that there exist a single source (a vertex with no incoming
edges) and a single sink (a vertex with no outgoing edges).
The source denotes a virtual start module that sends out all
source data and initializes the execution; similarly, the sink
denotes a virtual finish module that collects all final data
products and stops the execution. Due to the presence of
these two terminals, every module in the workflow lies on
some path from the source to the sink. In addition, we are
given two sets of subgraphs of the specification, called forks
and loops, which are allowed to be executed repeatedly in
a parallel and serial manner respectively. These fork and
loop subgraphs must be (1) self-contained: each subgraph
has a single source and a single sink, and there are no edges
coming into or going out from this subgraph through any
internal vertices (see Definition 1); and (2) well-nested: for
any two subgraphs, either one contains another or they are
disjoint (see Definition 2).
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Figure 2: Workflow Specification (G,F ,L)

Example 1. A simple workflow specification (G,F ,L) is
shown in Figure 2, where G denotes the specification graph,
and F = {F1, F2} and L = {L1, L2} denote two sets of
well-nested fork and loop subgraphs respectively. The letter
inside each vertex indicates its module name. We also use
the name as a unique identifier for each vertex in G. We
denote a fork subgraph by a dotted oblong which includes
only the internal vertices, and a loop subgraph by a dotted
backward edge directed from the sink to the source.

Workflow Run. Each run of a workflow must follow all the
paths in the specification, and may repeatedly execute the
given fork and loop subgraphs. A fork execution replicates
one or more copies of a fork subgraph, and combines them
in parallel; a loop execution replicates one or more copies of
a loop subgraph, and combines them in series (see Defini-
tion 4). Two copies of the same fork or loop may differ due
to the presence of some inner forks and loops.

a1

b3 c3

h1

d1 e1 f1 g1

b1 c1 b2 c2

e2
f3

g2

f2

Figure 3: Workflow Run R

Example 2. Figure 3 shows a run R of the specification
(G,F ,L) given in Figure 2. The module names in R are not
unique due to the fork and loop executions. We thus add a
subscript to the module name to obtain a unique identifier
for each vertex in R. Comparing Figure 3 with Figure 2, we
can see that F1 is executed twice: in one copy (a1 → b1 →
c1 → b2 → c2 → h1), L2 is executed twice, while in the
other copy (a1 → b3 → c3 → h1), L2 is executed only once.

3.2 Workflow Model Formalization
Given a directed graph G, we denote the vertex set of

G by V (G), and the edge set of G by E(G). We use a
pair (u, v) ∈ E(G) to denote an edge directed from a vertex
u ∈ V (G) to another vertex v ∈ V (G). We say a directed
acyclic graph G is an acyclic flow network if it has a single
source s(G) and a single sink t(G). Let V ∗(G) be the set of
internal vertices ofG. That is, V ∗(G) = V (G)\{s(G), t(G)}.

Definition 1. (Self-Contained Subgraph) Given an
acyclic flow network G, we say a subgraph H of G is self-
contained if (1) H has a single source s(H) and a single
sink t(H) (s(H) 6= t(H)); (2) For any u ∈ V ∗(H) and v ∈
V (G) \ V (H), (u, v) 6∈ E(G) and (v, u) 6∈ E(G); and (3) For
any u, v ∈ V (H), (u, v) ∈ E(G) and (u, v) 6∈ E(H) only if
u = s(H) and v = t(H).

A self-contained subgraph H of an acyclic flow network G
is said to be (1) atomic, if there is no self-contained subgraph
H ′ of G such that s(H ′) = s(H) and t(H) = t(H ′) and
E(H ′) ⊂ E(H); and (2) complete, if for any v ∈ V (G) \
V (H), (s(H), v) 6∈ E(G) and (v, t(H)) 6∈ E(G).

s(H) t(H)

G

H

(a) Atomic (b) Complete

t(G)s(G)
s(H) t(H)

G

H t(G)s(G)

Figure 4: Self-Contained Subgraphs

Figure 4 illustrates the above definitions. Intuitively, a
self-contained subgraph connects to other portions of the
graph through only its source and sink. It is (1) atomic, if
it forms a single branch between its source and sink (i.e., it
cannot be split into two parallel self-contained subgraphs)
(see Figure 4(a)); and (2) complete, if it contains all branches
between its source and sink. In addition, any incoming edge
must go through the source and any outgoing edge must go
through the sink (see Figure 4(b)).

Definition 2. (Well-Nested Fork and Loop System)
Given an acyclic flow network G, a set F of atomic self-
contained subgraphs of G, and a set L of complete self-
contained subgraphs of G, we say a pair (F ,L) forms a well-
nested fork and loop system for G if (i) F ∩ L = ∅ and (ii)
for any H1, H2 ∈ F ∪L, exactly one of the following is true:

1. DomSet(H1) ⊆ DomSet(H2) and E(H1) ⊂ E(H2); or

2. DomSet(H1) ⊇ DomSet(H2) and E(H1) ⊃ E(H2); or

3. DomSet(H1)∩DomSet(H2) = ∅ and E(H1)∩E(H2) = ∅.
where DomSet(H) denotes the set of vertices dominated by a
subgraph H ∈ F ∪ L, and is defined as

DomSet(H) =

{
V ∗(H) if H ∈ F
V (H) if H ∈ L
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Note that a fork subgraph dominates only the internal
vertices, since its source and sink may be shared by other
edge-disjoint fork or loop subgraphs.

Definition 3. (Workflow Specification) A workflow spec-
ification is denoted by a triple (G,F ,L), whereG is a uniquely
labeled acyclic flow network, and (F ,L) forms a well-nested
fork and loop system for G.

Definition 4. (Parallel and Serial Composition) Given
two acyclic flow networks G1 and G2, a parallel composition
of G1 and G2 forms a new acyclic flow network G by iden-
tifying s(G1) with s(G2) and t(G1) with t(G2); and a serial
composition of G1 and G2 forms a new acyclic flow network
G by adding a new edge directed from t(G1) to s(G2).

s(G1) G1

G2

G2 G2G1

G1

t(G1)

s(G2) t(G2)

Paralle
l

s(G1) t(G1) s(G2) t(G2)

s(G1) = s(G2) t(G1) = t(G2)

Serial

Figure 5: Parallel and Serial Composition

Figure 5 illustrates series and parallel compositions. Note
that this definition can be extended to an arbitrary number
of acyclic flow networks combined in a single step.

Definition 5. (Replacement) Given an acyclic flow net-
work G, replacing a self-contained subgraph H1 of G with
another acyclic flow network H2 will identify s(H1) with
s(H2) and t(H1) with t(H2).

Definition 6. (Workflow Run) Given a workflow spec-
ification (G,F ,L), a workflow run of this specification is
denoted by a labeled graph R that can be derived from G
by applying a sequence of the following operations:

• Fork Execution: Replace a fork subgraph H ∈ F
with the parallel composition of two copies of H.

• Loop Execution: Replace a loop subgraph H ∈ L
with the serial composition of two copies of H.

Lemma 3.1. For any workflow run R, let F ′ and L′ be
the sets of all fork and loop copies in R respectively. Then
(F ′,L′) forms a well-nested fork and loop system for R.

3.3 Problem Statement and Main Result
In this paper, we develop a compact and efficient reacha-

bility labeling scheme for workflow runs. More precisely, we
will assign each vertex in the run with a reachability label
such that, using only the labels of any two vertices, we can
quickly decide if one can reach the other.

Definition 7. (Reachability Labeling Scheme) A reach-
ability labeling scheme (in short, labeling scheme) is de-
noted by a triple (D, φ, π), where D is the label domain,
φ : V (G) → D is a labeling function (i.e., encoding algo-
rithm) that, given a directed graph G, assigns each vertex
v ∈ V (G) a reachability label φ(v) ∈ D, and π : D × D →
{0, 1} is a binary predicate (i.e., decoding algorithm), such
that for any two vertices v, v′ ∈ V (G), π(φ(v), φ(v′)) = 1 if
and only if there exists a path from v to v′ in G.

The quality of a labeling scheme (D, φ, π) is measured by
three criteria: (1) label length: the length of reachability
labels used from the domain D; (2) construction time: the
time taken to compute the labeling function φ; and (3) query
time: the time taken to evaluate the binary predicate π.

Problem Statement. This paper addresses the problem
that whether there is a labeling scheme for workflow runs
that optimizes the above three parameters simultaneously.

Main Result. We develop a skeleton-based labeling scheme
for workflow runs which uses reachability labels from the
underlying specification (called the skeleton labels). The fol-
lowing theorem summarizes our main result.

Theorem 1. (Main Theorem) Given any fixed labeled
specification, there exists a reachability labeling scheme for
any run conforming to the specification that uses logarithmic
length labels, takes linear construction time, and answers
queries in constant time.

Note that just to index n distinct nodes we need logn bits
per vertex, to read the whole graph we need linear time and
to answer any query we need at least constant time; in this
sense our labeling scheme is optimal. However, in general
it is impossible to obtain an optimal labeling scheme for
acyclic flow networks: We can construct a family of networks
such that encoding the reachability for these graphs requires
labels of length Ω(n), even if we allow arbitrary construction
and query time. However, our workflow runs originate from
a fixed specification, and thus have some inherent structure
that we can exploit to obtain an optimal labeling scheme.

In the rest of this paper, we will use (G,F ,L) to denote
a specification and R to denote a run of this specification.
When F and L are clear from the context, we may simply
refer to the specification as G. To illustrate our labeling
techniques, we will use the running examples of specification
and run given in Figure 2 and 3 respectively.

4. SKELETON-BASED LABELING SCHEME
We now present a skeleton-based labeling scheme for work-

flow runs. We assume that the run to be labeled is given
along with its underlying specification, that is already la-
beled by some other labeling scheme. The main idea is de-
scribed as follows. Recall that each run follows the same ba-
sic structure as the specification, but becomes much larger
due to the fork and loop behavior. We will design a compact
labeling scheme that encodes the basic structure of a run us-
ing the given reachability labels from its specification (i.e.,
skeleton labels), and encode the well-nested fork and loop
structure using some extended labels. Combining these two
labels, we are able to efficiently answer reachability queries.

The rest of this section is organized as follows. Section 4.1
introduces some preliminary notions, namely origin, exe-
cution plan and context, which play a central role in our
skeleton-based labeling scheme. Section 4.2 describes how
to answer reachability queries using context and skeleton la-
bels. A compact three-dimensional encoding for the context
is presented in Section 4.3. We complete the description of
our skeleton-based labeling scheme in Section 4.4, and finally
present the correctness and quality analysis in Section 4.5.
Due to space constraints, proofs of most claims are omitted.

4



4.1 Preliminaries
Origin. We start with the notion of origin, which estab-
lishes the correspondence between the vertices of a specifica-
tion and a run based on their module names. Let Module(v)
denote the module name of a vertex v ∈ V (G) or V (R).

Definition 8. (Origin) Given a specification G and a run
R of G, a vertex u ∈ V (G) is said to be the origin of a
vertex v ∈ V (R), denoted by u = Orig(v), if Module(u) =
Module(v).

Note that the origin is well-defined for each vertex in R,
since the module names in G are unique. The skeleton label
for a vertex v ∈ V (R) then refers to the given reachability
label on its origin Orig(v) ∈ V (G).

Fork and Loop Hierarchy. All fork and loop subgraphs
given a specification (G,F ,L) are well-nested, and therefore
can be captured by an unordered tree TG, called the fork
and loop hierarchy, where the root of TG corresponds to
the entire specification graph G, and any other node in TG

corresponds to a unique fork or loop subgraph H ∈ F ∪ L.

G

F1

L2

L1

F2

Figure 6: Fork and
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Figure 7: Execution Plan TR

Example 3. Figure 6 shows the fork and loop hierarchy
TG for the running example, where the label inside each
node indicates its corresponding subgraph.

Execution Plan. By Lemma 3.1, all fork and loop copies
generated in a run R are also well-nested. We can thus
similarly describe them by a tree TR, called the execution
plan, where the root of TR corresponds to the entire run
graph R (called a G+ node), and any other node in TR either
corresponds to a single fork or loop copy (called an F+ or
an L+ node respectively) or corresponds to all copies of the
same fork or loop (called an F− or an L− node respectively).
Note that TR is a semi-ordered tree in the sense that the
children of an L− node are ordered while the children of any
other node are unordered. In the following, we may simply
refer to an F+ node as a + or F node, and follow a similar
convention for other types of nodes.

Example 4. Figure 7 shows the execution plan TR for the
running example, where the label inside each node indicates
its type, and the label beside each node indicates a unique
identifier. For instance, x3 is an F+ node, corresponding to
a single fork copy of F1. Similarly, its sibling x7 corresponds
to a second copy of F1. Their parent x2 is then an F− node,
corresponding to the parallel composition of these two fork
copies. Comparing Figure 7 with Figure 6, we can see that
an execution plan essentially describes how many times each
fork and loop subgraph is executed in the corresponding run.

For any node x ∈ V (TR), let SubR(x) denote the corre-
sponding fork or loop copy for x (i.e., a subgraph of R), and
let SubG(x) denote the corresponding fork or loop subgraph
for x (i.e., a subgraph of G) from which SubR(x) is derived.

Lemma 4.1. For any node x ∈ V (TR), let y1, . . . , yk be
the children of x in TR, then

• If x is an F− node, then SubR(x) is obtained by a
parallel composition of all SubR(yi)’s.

• If x is an L− node, then SubR(x) is obtained by a serial
composition of all SubR(yi)’s.

• If x is a + node, then SubR(x) is obtained from SubG(x)
by replacing each SubG(yi) with SubR(yi).

Context. Intuitively, the context of a vertex in R refers to
the smallest fork or loop copy that dominates this vertex.
Recall that each + node in TR corresponds to a single fork
or loop copy. We therefore assign each vertex in R a unique
+ node in TR as its context. Formally,

Definition 9. (Context) Given a run R and its execution
plan TR, a node x ∈ V (TR) is said to be the context of a
vertex v ∈ V (R), denoted by x = C(v), if x is the deepest +
node in TR such that v ∈ DomSet(x), where

DomSet(x) =

{
V ∗(SubR(x)) if x is an F node

V (SubR(x)) otherwise

In Definition 9, DomSet(x) denotes the set of vertices in
R dominated by a node x in TR. This extends the notion
of domination2 introduced in Definition 2. Note that the
context is well-defined for each vertex in R, since Lemma 3.1
ensures that the dominating sets are well-nested in TR.
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x4 x8
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x11

{ e1, g1 }

x12

x13

x15

x16 x17

x14

{ e2, g2 }

{ a1, d1, h1 }x1

{ b2, c2 } { b3, c3 } { f3 }

Figure 8: Context Assignment C : V (R)→ V (TR)

Example 5. Figure 8 shows the context assignment for the
running example. Note that by Definition 9, each fork copy
dominates only the internal vertices, since its source and sink
may be shared by other edge-disjoint fork or loop copies. For
instance, a1 and h1 are shared by two fork copies represented
by x3 and x7 respectively. To ensure that the context for a1

and h1 is well-defined, we will assign the least common +
ancestor x1 of x3 and x7 as their context.

We say a + node x ∈ V (TR) is empty if there does not
exist any vertex v ∈ V (R) such that C(v) = x. For example,
as shown in Figure 8, x3 and x7 are two empty + nodes.
Obviously, the context of a vertex v ∈ V (R) always refers
to a nonempty + node x ∈ V (TR).
2Note that our definition of dominating set differs from the one
typically used in graph theory.
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4.2 Answering Reachability Queries
We now show that the reachability between any two ver-

tices in the run can be determined using only their context
and given skeleton labels. The main idea is to check the least
common ancestor of their context in the execution plan. If
this ancestor is an F− or an L− node, then we can imme-
diately determine the reachability by showing that they are
dominated by two distinct copies of the same fork (unreach-
able) or loop (reachable). Otherwise (this ancestor is a +
node), we show that the reachability between these two ver-
tices in the run is the same as the reachability between their
origins in the specification, and therefore can be determined
using the given skeleton labels. Recall that for any vertex
v ∈ V (R), C(v) denotes the context of v and Orig(v) denotes
the origin of v. The lemma below formalizes this idea.

Lemma 4.2. For any two vertices v, v′ ∈ V (R), if the
least common ancestor of C(v) and C(v′) in TR is

• an F− node, then there does not exist a path from v
to v′ or from v′ to v in R.

• an L− node, then there exists a path either from v to
v′ or from v′ to v in R.

• a + node, then there exists a path from v to v′ in R iff
there exists a path from Orig(v) to Orig(v′) in G.

Example 6. We can easily verify above three rules using
Figure 3. First, consider two vertices b1 and c3 in R. We can
see from Figure 8 that the least common ancestor of their
context (i.e., x5 and x9) is an F− node (i.e., x2). Therefore,
by Lemma 4.2, there does not exist a path between b1 and
c3, which is confirmed by Figure 3. Similarly, consider f1
and e2. The least common ancestor of their context (i.e., x13

and x14) is an L− node (i.e., x10), and there exists a path
from f1 to e2, which again verifies our Lemma 4.2. Finally,
consider c1 and d1. The least common ancestor of their
context (i.e., x5 and x1) is a + node (i.e., x1). Moreover,
we can see from Figure 2 that there does not exist a path
between their origins (i.e., c and d) in G. Consequently, by
Lemma 4.2, there also does not exist a path between c1 and
d1 in R, which is again confirmed by Figure 3.

4.3 Encoding Context
As seen in Section 4.2, the reachability query against two

vertices in the run can be reduced to a related query against
their context in the execution plan. Recall that the context
always refers to a nonempty + node. The related query is
therefore stated as follows. Given two nonempty + nodes in
the execution plan, we want to decide if their least common
ancestor is an F− or an L− or a + node. In this section, we
will show that we can efficiently answer this related query
using a three-dimensional encoding for the context.

Generate Three Total Orders. We first present a simple
algorithm to generate three total orders O1,O2,O3 on all
nonempty + nodes in the execution plan TR. The algorithm
performs three preorder traversals3 on TR, and records the
order in which all nonempty + nodes are visited in the ith
traversal as the total order Oi (i = 1, 2, 3). Recall that only
the children of an L− node are ordered in TR, for any other

3A preorder traversal on a tree starts at the root of the tree, and
recursively visits the root of a subtree before visiting its children.

Algorithm 1 GenerateThreeOrders

Input: TR : an execution plan
Output: O1,O2,O3 : three total orders

/* Generate O1 */
Do a preorder traversal on TR: for each node x ∈ V (TR),
visit the children of x from left to right.
/* Generate O2 */
Do a preorder traversal on TR: for each node x ∈ V (TR),
if x is an F− node, visit the children of x from right to
left; otherwise, visit the children of x from left to right.
/* Generate O3 */
Do a preorder traversal on TR: for each node x ∈ V (TR),
if x is an L− node, visit the children of x from right to
left; otherwise, visit the children of x from left to right.
return O1,O2,O3

node, we fix an arbitrary ordering of its children. The details
of three preorder traversals are described in Algorithm 1.
Note that these traversals differ only in the order in which
the children of an F− or an L− node are visited.

The above three total orders lend themselves to a compact
three-dimensional encoding for the context: Each nonempty
+ node in TR is simply encoded by three natural numbers
indicating its positions in O1,O2,O3 respectively.

G
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F1
-

F1
+

L1
-

L1
+

L2
-

F1
+

L1
+

L2
+

L2
+

L2
-
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+

F2
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F2
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F2
+

F2
+

x5 x6

x2

x4 x8
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x10

x11

(5, 5, 8)

x12

x13

x15

x16 x17

x14

(7, 7, 5)

(1, 1, 1)x1

x3 x7

(2, 3, 3) (3, 4, 2) (4, 2, 4) (6, 6, 9) (8, 9, 6) (9, 8, 7)

Figure 9: Context Encoding

Example 7. Figure 9 shows the context encoding for the
running example. Note that Algorithm 1 will traverse every
node in the execution plan, but records only the ordering of
nonempty + nodes. In particular, x3 and x7 are empty +
nodes (as shown in Figure 8) and are therefore skipped.

Compare Three Total Orders. The lemma below shows
how to answer the related query using the context encoding.
Let x <O x

′ denote that x precedes x′ in the total order O.

Lemma 4.3. For any two nonempty + nodes x, x′ ∈ V (TR),

• If x <O1 x
′ and x′ <O2 x, then (1a) the least common

ancestor of x and x′ is an F− node and (1b) x <O3 x
′.

• If x <O1 x
′ and x′ <O3 x, then (2a) the least common

ancestor of x and x′ is an L− node and (2b) x <O2 x
′.

• If x <O1 x
′, x <O2 x

′ and x <O3 x
′, then (3) the least

common ancestor of x and x′ is a + node.

Example 8. We can easily verify the above three rules us-
ing Figure 9. For instance, consider two nonempty + nodes
x5 and x9 in TR. Observe that x5 <O1 x9 and x9 <O2 x5.
Hence, by Lemma 4.3, the least common ancestor of x5 and
x9 (i.e., x2) is an F− node and x5 <O3 x9, which is con-
firmed by Figure 9. Using (x13, x14) and (x5, x1), we can
verify the other two rules in a similar way.
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4.4 Labeling Scheme Description
We are now ready to present the skeleton-based labeling

scheme. Recall that a labeling scheme is denoted by a triple
(D, φ, π), where D is the label domain, φ is the labeling func-
tion (i.e., encoding algorithm) and π is the binary predicate
(i.e., decoding algorithm). In the following, let (Dg, φg, πg)
denote the given labeling scheme used to label the specifi-
cation, and (Dr, φr, πr) denote our proposed skeleton-based
labeling scheme used to label the run.

Label Domain (Dr). Each label assigned by our skeleton-
based labeling scheme consists of a three-dimensional en-
coding for the context (i.e., three natural numbers) and a
skeleton label from the specification, i.e., Dr = N3 ×Dg.

Labeling Function (φr). A high level description of the
labeling function φr is shown in Algorithm 2. Given a spec-
ification G labeled by φg, we label a run R of G in four
steps: First, we compute the origin function Orig : V (R)→
V (G) by matching their module names (Line 2). Second,
we construct the execution plan TR for R, and compute
the context function C : V (R) → V (TR) (Line 5). Since
this part of computation may be of independent interest,
we defer the description of the algorithm ConstructPlan

to Section 5. Third, we build three-dimensional context
encoding by generating three total orders O1,O2,O3 us-
ing Algorithm 1 (Line 8). Finally, we assign each vertex
v ∈ V (R) a reachability label φr(v) = (q1, q2, q3, φg(u)),
where (q1, q2, q3) denotes its context encoding (i.e., the po-
sitions of x = C(v) in O1,O2,O3 respectively) and φg(u)
denotes its skeleton label (i.e., the reachability label on
u = Orig(v) given by φg). (Line 12 to Line 15).

Binary Predicate (πr). Given the above labels, we can
answer any reachability query on R by a simple binary pred-
icate πr described in Algorithm 3. Observe that evaluating
the predicate πr for a pair of labels from Dr only requires
comparing three pairs of natural numbers plus one potential
evaluation of the predicate πg for a pair of labels from Dg.

a1

b3 c3

h1

d1 e1 f1 g1

b1 c1 b2 c2

e2
f3

g2

f2

(2, 3, 3, Фg(b)) (2, 3, 3, Фg(c)) (3, 4, 2, Фg(b)) (3, 4, 2, Фg(c))

(1, 1, 1, Фg(a)) (1, 1, 1, Фg(h))

(1, 1, 1, Фg(d))

(5, 5, 8, Фg(e)) (5, 5, 8, Фg(g))

(4, 2, 4, Фg(b)) (4, 2, 4, Фg(c))

(7, 7, 5, Фg(g))

(7, 7, 5, Фg(e))

(9, 8, 7, Фg(f))

(8, 9, 6, Фg(f))(6, 6, 9, Фg(f))

Figure 10: Skeleton-Based Labeling Scheme

Example 9. The reachability labels assigned by φr for the
running example are shown in Figure 10, where φg denotes
the given skeleton labels. To illustrate how to answer reach-
ability queries using these labels, let us consider two vertices
c1 and d1 in R. We start by comparing their reachability
labels (2, 3, 3, φg(c)) and (1, 1, 1, φg(d)) using the predicate
πr described in Algorithm 3. Since (3− 1)× (3− 1) > 0, we
need to further compare their skeleton labels φg(c) and φg(d)
using the given predicate πg. Observe from Figure 2 that
there is no path from c to d in G (i.e., πg(φg(c), φg(d)) = 0).
Hence, we can conclude that there is also no path from c1
to d1 in R, which is confirmed by Figure 10.

Algorithm 2 Labeling Function φr : V (R)→ Dr

Input: G : a specification
φg : V (G)→ Dg : a labeling function for G
R : a run of G

Output: φr : V (R)→ Dr : a labeling function for R

1: /* Step 1: Compute Origin */
2: Orig← ComputeOrigin(G,R)
3:
4: /* Step 2: Construct Execution Plan and Context */
5: < TR, C >← ConstructPlan(G,R)
6:
7: /* Step 3: Build Context Encoding */
8: < O1,O2,O3 >← GenerateThreeOrders(TR)
9:

10: /* Step 4: Assign Reachability Labels */
11: for each vertex v ∈ V (R) do
12: x← C(v) : the context of v
13: qi ← the position of x in Oi (1 ≤ i ≤ 3)
14: u← Orig(v) : the origin of v
15: φr(v)← (q1, q2, q3, φg(u)).
16: end for
17:
18: return φr

Algorithm 3 Binary Predicate πr : Dr ×Dr → {0, 1}
Input: dr = (q1, q2, q3, dg) ∈ Dr

d′r = (q′1, q
′
2, q
′
3, d
′
g) ∈ Dr

πg : Dg ×Dg → {0, 1}
Output: πr(dr, d

′
r)

1: if (q2 − q′2)× (q3 − q′3) < 0 then
2: if q1 < q′1 and q3 > q′3 then
3: πr(dr, d

′
r)← 1

4: else
5: πr(dr, d

′
r)← 0

6: end if
7: else
8: πr(dr, d

′
r)← πg(dg, d

′
g)

9: end if
10: return πr(dr, d

′
r)

4.5 Correctness and Quality Analysis
The following lemma shows the correctness of our skeleton-

based labeling scheme.

Lemma 4.4. Given a run R labeled by our skeleton-based
labeling scheme (Dr, φr, πr), for any two vertices v, v′ ∈
V (R), πr(φr(v), φr(v′)) = 1 if and only if there exists a
path from v to v′ in R.

Proof. (Sketch) Recall that TR denotes the execution
plan for R, and C(v) denotes the context of a vertex v ∈
V (R). Let φr(v) = (q1, q2, q3, dg) and φr(v′) = (q′1, q

′
2, q
′
3, d
′
g).

We can prove the theorem by doing a case analysis based
on their context encodings. For example, if q1 < q′1, q2 >
q′2, q3 < q′3, then by Lemma 4.3, the least common ances-
tor of C(v) and C(v′) in TR is an F− node. Therefore, by
Lemma 4.2, there does not exist a path from v to v′ in R.
This is correctly encoded by Algorithm 3. The other cases
can be proved in a similar way using Lemma 4.2 and 4.3.
Note that by Lemma 4.3, two cases (q1 > q′1, q2 < q′2, q3 < q′3
and q1 < q′1, q2 > q′2, q3 > q′3) are impossible.
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The following lemma analyzes the quality of our skeleton-
based labeling scheme in terms of label length, construction
time and query time. We do not count the cost of labeling
the specification, since it is fixed for all runs.

Lemma 4.5. Given a fixed labeled specification G, for any
run R of G, our skeleton-based labeling scheme for R guar-
antees (1) the label length ≤ 3 lognR + lognG, (2) the con-
struction time is O(mR + nR), and (3) the query time is
O(1) + tG, where nR = |V (R)|, nG = |V (G)|, mR = |E(R)|
and tG is the query time for G using the given skeleton labels.

Proof. Let TR be the execution plan of R, and n+
T be

the number of nonempty + nodes in TR. Then each label
in R consists of three natural numbers between 1 and n+

T

and a skeleton label from G. Note that there are at most
nG distinct skeleton labels in total, so we only need lognG

bits to encode each skeleton label. Therefore, the total label
length ≤ 3 logn+

T + lognG. On the other hand, it is easy
to see that n+

T ≤ nR, because each nonempty + node in TR

serves as the context for at least one distinct vertex in R.
Consequently, the label length ≤ 3 lognR + lognG.

According to Algorithm 2, labeling a run R involves four
steps: (1) computing the origin. Since the module names in
G are unique, finding the origin for each vertex in R needs
only O(nR) time; (2) constructing the execution plan and
context, for which we will present in Section 5 a linear time
algorithm. So by Lemma 5.1, this step takes O(mR + nR)
time; (3) building context encoding (Algorithm 1), which
uses three preorder traversals on TR. So it takes a total
of O(nT ) time, where nT = |V (TR)|; and (4) assigning the
reachability labels, which requires only one scan on V (R)
and therefore takes O(nR) time. It can be shown that nT =
O(mR). So the overall construction time is O(mR + nR).

Finally, according to Algorithm 3, evaluating the predi-
cate πr for a pair of labels in R requires only comparing
three pairs of natural numbers plus one potential evaluation
of the predicate πg for a pair of skeleton labels in G. Hence,
the query time is O(1) + tG.

Note that for a fixed specification G, we can treat both
nG and tG in Lemma 4.5 as constants. Consequently, our
skeleton-based labeling scheme guarantees logarithmic label
length, linear construction time, and constant query time
(in terms of the size of the run) and therefore is optimal.
This proves Theorem 1 claimed in Section 3.3.

5. EXECUTION PLAN AND CONTEXT
We now describe a linear time algorithm to generate the

execution plan TR and the context function C given a run
R and the specification (G,F ,L). We assume that a well-
nested fork and loop system (F ,L) is given in terms of the
fork and loop hierarchy TG

4.
Let TG(i) and TR(i) denote the i-th level of TG and TR

respectively. Let d be the depth of TG. Recall that, for each
level TG(i) except TG(1), there are two levels TR(2i−2) and
TR(2i − 1). Our algorithm, namely ConstructPlan, gener-
ates TR in d iterations in a bottom-up manner; in iteration
i (i = d to 1), TR(2i − 1) and TR(2i − 2) are constructed.
Note that since there is a one-one correspondence between
the nodes of TG and the subgraphs in F∪L, we directly refer

4TG serves as a compact description of (F ,L), and can be effi-
ciently constructed from any other explicit description of (F ,L).

to any subgraph H ∈ F ∪ L as a node H ∈ TG. Next we
give an overview of the algorithm ConstructPlan, highlight-
ing the challenges in obtaining the linear time complexity.
(Details can be found in the full version of this paper.)

(1) Identifying all copies of fork and loop sub-
graphs: If H ∈ TG is a leaf node, then we can count
the number of copies of any edge e ∈ E(H) in R to
count the number of copies of H in R. But if H ∈ TG

is a non-leaf node, we may not have a unique edge
in E(H) which does not belong to any other fork or
loop subgraph (for example, consider a line-graph of
length 2, u→ v → w, and define three forks on {u, v},
{v, w} and {u, v, w}). For each leaf node H ∈ TG,
we assign any edge e ∈ E(H) as the leader of H and
call it leader(H). If H ∈ TG is a non-leaf node, we
assign any arbitrary child Hc of H as a candidate for
leader(H); as the algorithm ConstructPlan executes
in the bottom-up fashion, it constructs an edge from a
copy of Hc during its execution. By traversing R only
once we can compute all copies of leader(H) for each
leaf node H ∈ TG(d) and subsequently before the i-th
iteration starts (i = d − 1 to 1), we have all copies of
leader(H) for each node H ∈ TG(i).

(2) Avoiding visiting any edge and node in R
more than once: In iteration i, we identify and visit
all copies of H ∈ TG(i) in R. To avoid visiting the
vertices and edges in these copies in future iterations,
after TR(2i − 1) is constructed, we replace each copy
of H ∈ TG(i) by a directed edge from the source to the
sink of this copy preserving only these two vertices.
Similarly, after TR(2i − 2) is constructed, we replace
all copies of H created due to a fork or loop execution
by a directed edge (this preserves the source and sink
of a fork execution and the source of the first copy and
the sink of the last copy of a loop execution). We refer
to the new edges added in this process as special edges.

Let H ′ be a copy of a subgraph H ∈ TG(i) in R. In itera-
tion i, we start with an endpoint of a copy of leader(H) in
H ′ as a seed and explore the vertices and edges in H ′ using a
modified depth first search. In this search procedure, we use
the fact that in the modified run-graph R at each iteration
i (after deleting and adding some edges in the previous iter-
ations), (1) the induced subgraph on the vertices in H ′ is a
connected subgraph if H ∈ L; and (2) the induced subgraph
on the vertices in H ′ excluding s(H ′), t(H ′) is a connected
subgraph if H ∈ F . We can construct the execution plan
TR and compute the context function C(v) for each vertex
v ∈ V (R) as we execute the above search procedure.

Since we do not traverse any edge more than once, the
time complexity of the algorithm ConstructPlan can be
bounded by O(mR + nR + m′), where m′ is the number
of special edges added in all the iterations. It can also be
shown that m′ = O(|V (TR)|) = O(mR), therefore the time
complexity is O(mR + nR) (details are omitted).

Lemma 5.1. Given a fixed specification (G,F ,L) and a
run R, the execution plan TR and the context function C
can be computed in O(mR + nR) time.
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6. ANSWERING DATA PROVENANCE
To efficiently query dependency relations between data or

between data and modules, we extend module labels to the
data that flow over the data channels (edges) in a run.

We start by associating with each edge e = (u, v) the
set of data items that flow from module u to module v in
the run, i.e., that are produced (written) by u and con-
sumed (read) by v. We call this set Data(e). Note that
each data item must be created by a unique module, i.e., if
x ∈ Data(u, v) and x ∈ Data(u′, v′) then u = u′. We say
a data item x depends on another data item x′ if there ex-
ists a sequence of modules v0, . . . , vk and a set of data items
x1, . . . , xk such that x1 = x′, xk = x, and for all 1 ≤ i ≤ k,
xi ∈ Data(vi−1, vi).

Given a run whose modules (vertices) are labeled by a
labeling scheme (D, φ, π), we label the data as follows. For
any data item x, let Output(x) be the (unique) module
that writes x as output and Inputs(x) the set of all modules
that read x as input. In other words, if x ∈ Data(u, v) then
u = Output(x) and v ∈ Inputs(x). We label x by

(φ(Output(x)), {φ(v) | v ∈ Inputs(x)})

where φ(Output(x)) denotes the reachability label for the
output module of x, and {φ(v) | v ∈ Inputs(x)} denotes the
set of reachability labels for all input modules of x.

Using these labels, we can quickly determine the depen-
dency between data as follows. A data item x depends on
another data item x′ if and only if there exists a module
v ∈ Inputs(x′) such that π(φ(v), φ(Output(x)) = 1 (i.e.,
there is a path from v to Output(x)). Similarly, we can
determine the dependency between data and modules. For
example, to decide if a data item x depends on a module v,
we only need to check if π(φ(v), φ(Output(x))) = 1.

a1

b3 c3

h1

d1 e1 f1 g1

b1 c1 b2 c2

e2
f3

g2

f2
{x4, x5}

{x1, x3}

{x1, x2}

{x6, x7, x8}

{...} {...} {...}

{...}

{...}

{...} {...} {...} {...} {...}

{...}

{...}

{...}
{...}

{...}

{...}{...}

Figure 11: Query Data Dependency

Example 10. Figure 11 shows the running example of R,
where each edge is associated with a set of data items. Note
that one data item may be read by multiple modules. For
instance, x1 appears on both (a1, b1) and (a1, b3). There-
fore, by the above labeling scheme, x1 will be labeled by
(φ(a1), {φ(b1), φ(b3)}), where φ denotes the given module
labels. Similarly, x6 will be labeled by (φ(c3), {φ(h1)}). To
tell if x6 depends on x1, we need to check if at least one of
Inputs(x1) = {b1, b3} can reach Output(x6) = c3. That is,
if π(φ(b1), φ(c3)) = 1 or π(φ(b3), φ(c3)) = 1.

While the construction time for data labels remains linear
in the size of the input (Σe|Data(e)|), the label length will
increase by a factor of k + 1 and the query time by a factor
of k, where k is the maximum number of input modules of
a data item (i.e., k = maxx(|Inputs(x)|). Note that k is
bounded by the maximum outdegree of a vertex in the run.

7. LABELING THE SPECIFICATION
In order to apply our skeleton-based approach, one ques-

tion remains to be answered: How to label the specification?
Since any labeling scheme for acyclic flow networks may re-
quire labels of linear length, obtaining an optimal labeling
scheme for specifications is impossible in general.

Fortunately, within the skeleton-based labeling framework,
we do not need to worry about the quality of the scheme used
to label the specification, due to the following three obser-
vations. First, the size of the specification is expected to be
much smaller than the size of the run. For instance, the
largest workflow specification we have collected has fewer
than 150 vertices, while due to the fork and loop behavior, a
run of this workflow may have more than 10K vertices. Sec-
ond, the cost (both storage space and construction time) of
labeling a specification can be amortized over a large number
of runs. Since workflows tend to be repeatedly executed, we
need to label each specification only once and the resulting
skeleton labels can be reused by all runs of this specifica-
tion. We thus assume in Lemma 4.5 that each skeleton label,
when used to label the run, can be encoded by lognG bits
regardless of its actual size (Ω(nG) bits). Third, reachability
queries on the run may be frequently answered using only
the context encodings without comparing the skeleton labels.
Therefore, our approach is effective even when reachability
queries on the specification are slow. Interestingly, our ex-
perimental results show that given a specification, queries
on large runs may even be faster than queries on small runs.
A more detailed explanation is given in Section 8.2.

Hence any reasonable labeling scheme can be used to label
the specification. Here we briefly describe two extreme and
well-known approaches, which entail an expensive encoding
and decoding step respectively.

TCM. The first approach, called TCM, precomputes the tran-
sitive closure matrix M of the specification graph G (where
M [i][j] = 1 if the i-th vertex can reach the j-th vertex and
0 otherwise) and assigns the i-th row M [i] as the reachabil-
ity label of the i-th vertex. While this approach achieves
a constant query time over the specification (i.e., tG =
O(1)), the label length is nG and the construction time is
O(min{mG × nG, n

2.376
G × lognG})5.

BFS/DFS. The other approach, called BFS or DFS, answers
a reachability query in G by standard graph traversal in a
BFS or DFS manner. Note that this approach may or may
not be used as a labeling scheme. If it is used as a labeling
scheme, then the entire graph G has to be coded in each
label. Since no extra index structure is used, we can treat
the label length and construction time to be zero, but the
query time using BFS or DFS will be linear in terms of the
size of the specification (i.e., tG = O(mG + nG)).

The experimental results that follow show that even when
the above two simple schemes are used, our skeleton-based
labeling scheme is scalable to label a run with up to 100K
vertices. Links to more sophisticated labeling schemes for
general graphs are given in Section 2. These schemes gener-
ally provide a better tradeoff between the efficiency of encod-
ing and decoding, and therefore, if used to label the specifi-
cation, can further improve the overall labeling performance.

5Using matrix multiplication [7], we can compute the transitive
closure matrix in O(n2.376

G × log nG) time.
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Table 1: Characteristics of
Real-life Scientific Workflows

nG mG |TG| [TG]
EBI 29 31 4 2

PubMed 35 45 3 3
QBLAST 58 72 6 3
BioAID 71 87 10 4
ProScan 89 119 9 4
ProDisc 111 158 9 3

Table 2: Complexity Comparison (with Amortized Cost)

Label Length Construction Time Query Time

TCM+SKL 3 lognR + lognG +
n2

G
k×nR

O(mR + nR + mG×nG
k

) O(1)

BFS+SKL 3 lognR + lognG O(mR + nR) O(mG + nG)

TCM nR O(mR × nR) O(1)

BFS 0 0 O(mR + nR)
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Figure 12: Real Scientific Workflow

(Label Length for QBLAST)
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Figure 13: Real Scientific Workflow

(Construction Time for QBLAST)
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Figure 14: Real Scientific Workflow

(Query Time for QBLAST)

8. EXPERIMENTAL EVALUATION
All experiments were performed on a local PC with Intel

Pentium 2.80GHz CPU and 2GB memory running Windows
XP. All labeling schemes are implemented in Java. Our ex-
periments are conducted on both real and synthetic datasets.

Real Dataset. We collected real-life scientific workflows
from the myExperiment repository [14], which contains a
large public collection of workflows across multiple workflow
systems, including Taverna, Kepler and Triana.

Synthetic Dataset. We randomly generated synthetic
workflows using the following parameters: (1) nG: the num-
ber of vertices; (2) mG: the number of edges; (3) |TG|: the
size of the fork and loop hierarchy (i.e., the total number
of forks and loops plus one); and (4) [TG]: the depth of the
fork and loop hierarchy.

To simulate the execution of a workflow, we randomly
replicated each fork or loop one or more times. For each
specification, we generated a set of runs, varying their size
(i.e., the number of vertices) from 0.1K to 102.4K by a factor
of 2. Both the specification and runs are stored as XML files.
In all experiments, the time to parse the XML file is omitted.

We apply the three labeling schemes (and their different
combinations) discussed earlier in the paper: (1) TCM, which
precomputes the transitive closure matrix; (2) BFS, which
traverses the graph by BFS; and (3) SKL, which denotes our
proposed skeleton-based labeling scheme. To evaluate their
performance, we measured three parameters: label length,
construction time and query time. In all results reported
in this section, each point for label length and construction
time is an average over 103 sample runs, and each point for
query time is an average over 106 sample queries.

8.1 SKL Performance
In the first set of experiments, we measure the perfor-

mance of SKL using six selected, real-life scientific workflows.
Characteristics of these specifications are listed in Table 1.
We first label the specification using TCM, and then label the

runs using SKL. Note that the cost of labeling the specifi-
cation is omitted in this experiment. We only report the
results for the QBLAST workflow. Results for other work-
flows are similar.

Figure 12 reports the maximum and average label length 6

for the QBLAST workflow. As expected, both increase log-
arithmically with the size of the run, and the average label
length is always within a small constant of the maximum.
More interestingly, as shown in the proof of Lemma 4.5,
the tight upper bound of label length is 3 logn+

T + lognG

(rather than 3 lognR + lognG), where n+
T is the number of

nonempty + nodes in the execution plan and n+
T ≤ nR. This

is confirmed by Figure 12: The actual maximum label length
is less than the asymptotic upper bound 3 lognR (i.e., the
dotted line) by a small constant.

Figure 13 reports the construction time for the QBLAST
workflow under two experiment settings. In the default set-
ting, the run is given as a graph. In the other setting, we
assume that the run is given along with its execution plan
and context. Figure 13 shows that the construction time
increases proportionally with the size of the run, confirming
our linear time complexity result in Lemma 4.5. Comparing
the two settings, we also observe that the main time cost of
skeleton-based labeling lies in the computation of the execu-
tion plan and context. Hence, we can significantly speed up
the labeling process if this run-time information is readily
available. For example, in Taverna [9], the execution plan
and context can be directly extracted from the system log.

Figure 14 reports the query time for the QBLAST work-
flow. Since the specification is labeled by TCM, it achieves a
constant query time over the specification (i.e., tG = O(1)
in Lemma 4.5). Hence, the overall query time over the run
is also constant, which is confirmed by Figure 14.

To conclude, this experiment empirically validates that
SKL guarantees logarithmic label length, linear construction
time, and constant query time.

6The average length is measured only for the variable-size labels.
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Figure 15: TCM+SKL vs BFS+SKL
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8.2 TCM + SKL vs BFS + SKL
In the second set of experiments, we compare different

combinations with SKL: (1) TCM+SKL and (2) BFS+SKL, which
first label the specification using TCM or BFS and then la-
bel the run using SKL. To demonstrate the scalability, we
also compare them with two extreme approaches: (3) TCM

and (4) BFS, which label the run using TCM or BFS directly.
Note that to obtain a fair comparison, we count the initial
cost (both storage space and construction time) of labeling
a specification, and amortize this cost over all the runs. We
analyze the complexity of these four labeling schemes (with
amortized cost) in Table 2, where k is the number of runs.
This experiment was conducted on a synthetic workflow with
nG = 100, mG = 200, |TG| = 10 and [TG] = 4. We measured
the amortized cost over a single run, two runs and ten runs
respectively.

Figure 15 reports the maximum label length (with amor-
tized cost) for TCM+SKL and BFS+SKL. As expected, BFS+SKL

builds much shorter labels than TCM+SKL for small runs, but
when the run becomes large, they perform equally well. This
is because, as shown in Table 2, the amortized storage cost
for TCM+SKL is n2

G/(k × nR). It dominates the total label
length for small runs, but as the run becomes large, quickly
decreases to zero. Comparing the three curves for TCM+SKL,
we also observe that this amortized cost can be significantly
reduced, if the skeleton labels are reused by many runs.
Note that the label length for BFS+SKL is not affected by
the number of runs. We see a simple logarithmic increase
for BFS+SKL, confirming our complexity result in Table 2.

Figure 16 reports the construction time (with amortized
cost) for TCM+SKL and BFS+SKL, and shows a similar result
to Figure 15. Also observe that both TCM+SKL and BFS+SKL

label the runs faster than TCM 7 by several orders of magni-
tude. Note that TCM has a polynomial time complexity (X
and Y axises use a logarithmic scale).

Figure 17 reports the query time for all four labeling
schemes. Not surprisingly, both TCM+SKL and TCM achieve
a truly constant query time. Note that TCM+SKL is slightly
slower than TCM, due to a more complex decoding step. In
contrast, BFS+SKL is slower than TCM+SKL, especially for
small runs; BFS suffers from a linear query time, and is slower
than the other three approaches by several orders of magni-
tude. More interestingly, we can observe a slightly decreas-
ing query time for BFS+SKL. This counter-intuitive behavior
is explained as follows: As discussed in Section 7, we may

7In our experiments, TCM is only scalable to runs with no more
than 25.6K vertices, due to memory constraints.

avoid the expensive graph search on the specification if the
reachability between two vertices can be immediately deter-
mined by their context encodings, i.e., if the vertices are
dominated by two distinct copies of the same fork or loop.
Since large runs may have more fork and loop copies, the
chance to avoid the expensive graph search increases with
the size of the run. In particular, when nR = nG, we have
to search the specification graph for each query (there is no
chance). This results in exactly the same performance as
BFS, which is confirmed by Figure 17.

To conclude, SKL (combined with either TCM or BFS) is scal-
able to large runs: For a run with 102.4K vertices, it builds
labels shorter than 50 bits in 1s, and answers a query in
0.01ms 8. The comparison between TCM+SKL and BFS+SKL

shows that there is no clear winner, and only a small tradeoff
between the efficiency of encoding and decoding. In particu-
lar, when labeling large runs, SKL is insensitive to the quality
of the labeling scheme used to label the specification.

8.3 Influence of Specification
In the last set of experiments, we evaluate the influence of

specifications on the performance of SKL. Among all param-
eters of a specification, we focus only on nG. We generated
three synthetic workflows by setting nG = 50, 100 and 200
respectively and fixing mG/nG = 2, |TG| = 10 and [TG] = 4.
Note that we only measured the label length and construc-
tion time (both with amortized cost over 2 runs) for TCM+SKL

and the query time for BFS+SKL; As shown in Table 2, only
those parameters are significantly affected by nG.

Figure 18 reports the maximum label length (with amor-
tized cost) for TCM+SKL. We can observe that the smaller
specification results in much shorter labels for small runs,
but slightly longer labels for large runs. This is because
for small runs, the amortized storage cost for skeleton la-
bels (i.e., n2

G/(k × nR)) dominates the total label length.
Clearly, the smaller specification uses shorter skeleton la-
bels. In contrast, for large runs, the context encoding (i.e.,
3 lognR) dominates the total label length. Since the smaller
specification may contain smaller forks and loops, to obtain
a run with the same size, we must replicate more fork and
loop copies. Hence, the run of a smaller specification may
have a larger execution plan, and therefore is labeled by
larger numbers as the context encoding.

Figure 19 reports the construction time (with amortized
cost) for TCM+SKL, and shows a similar result to Figure 18.

8In real database systems, the query time may be much longer
due to the slow data loading from the database.
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Figure 18: Influence of Specification
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Figure 19: Influence of Specification

(Construction Time for TCM+SKL)
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Figure 20: Influence of Specification

(Query Time for BFS+SKL)

Figure 20 reports the query time for BFS+SKL. As ex-
pected, the query time increases with the size of the speci-
fication, since the main query cost lies in the graph search
over the specification. Clearly, a smaller specification al-
lows a faster graph search. We can also observe that the
query time decreases with increasing size of the run (simi-
lar to Figure 17). When the run becomes large, the three
specifications achieve very close query times.

To conclude, when the size of the run is close to the size of
the specification, SKL works significantly better with smaller
specifications; but for large runs, the size of specification has
a very weak influence on the overall performance of SKL.

9. CONCLUSIONS
In this paper, we present a skeleton-based labeling scheme

for workflows with well-nested forks and loops, which uses
a labeled specification to efficiently create compact reacha-
bility labels for large runs. For any fixed specification, our
scheme for labeling runs is optimal in the sense that it uses
logarithmic length labels, takes linear construction time, and
answers queries in constant time, even though runs can have
arbitrarily complex network structure. The experimental re-
sults demonstrate the effectiveness of our approach.

An interesting direction for future work is to design effi-
cient and compact dynamic or online labeling schemes, so
that data can be labeled and stored in a database along
with its label as soon as it is generated. Given that scien-
tific workflows can take a long time to execute, this would
enable efficient provenance queries on intermediate data re-
sults even before the workflow completes.
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