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Abstract 
 

This paper describes a head-tracking algorithm 
that is based on recognition and correlation-based 
weighted interpolation. The input is a sequence of 3D 
depth images generated by a novel time-of-flight depth 
sensor. These are processed to segment the 
background and foreground, and the latter is used as 
the input to the head tracking algorithm, which is 
composed of three major modules: First, a depth 
signature is created out of the depth images. Next, the 
signature is compared against signatures that are 
collected in a training set of depth images. Finally, a 
correlation metric is calculated between most possible 
signature hits. The head location is calculated by 
interpolating among stored depth values, using the 
correlation metrics  as the weights. This combination 
of depth sensing and recognition-based head tracking 
provides more than 90 percent success. Even if the 
track is temporarily lost, it is easily recovered when a 
good match is obtained from the training set. The use 
of depth images and recognition-based head tracking 
achieves robust real-time tracking results under 
extreme conditions such as 180-degree rotation, 
temporary occlusions, and complex backgrounds.    
 
1. Introduction 
 

Head tracking is a key component in applications 
such as human computer interaction, person 
monitoring, driver monitoring, video conferencing, and 
object-based compression. All of these applications 
require robust, and real-time (or near real time) 
tracking. On the other hand, head tracking algorithms 
are known to lose track during an abrupt movement, or 
during rotation of the face in a video sequence. A 
practical solution should expect the underlying 
tracking algorithm to fail, and should provide easy 
recovery. 

In this paper, we address the tracking problem for a 
person sitting in front of the camera.  The background 

can potentially be a cluttered background. The person 
is free to rotate his or her head and body as much as 
180 degrees, to partially move out of the picture, or to 
partially occlude his or her head. We aim to provide a 
robust solution that covers all possible above-
mentioned conditions, while retaining a reprojection 
accuracy of within a few pixels.  

Our system uses a time-of-flight based depth sensor 
to generate the input images. Depth images are suitable 
to our problem in various ways. First, depth images 
provide geometry information directly, as opposed to 
the photometric information contained in intensity 
images. For example, the cluttered background can be 
eliminated via depth segmentation.  Next, finding the 
head’s location in the image also provides depth, and 
therefore characterizes the head’s 3D location fully. 
Third, the depth image is not affected much by the 
texture on a face or environmental illumination 
conditions, and the tracker does not get out of track 
even with full rotations of the head and body. 

Our recognition-based head tracking algorithm 
involves a training and a testing stage. During training, 
knowledge-based clustering is applied to construct 
clusters of signatures for a dense sampling of locations 
of the head in the depth image. Each location 
(including z values) is used as the corresponding label 
in a supervised clustering algorithm. This assures that 
we keep every individual configuration in a particular 
location while still compressing the training data for 
efficiency purposes. In the testing stage, the signature 
of a test image is compared against the signatures 
stored with the training clusters. Once all satisfactory 
matches are determined, correlation values between 
new and stored depth images are computed around the 
possible head location to generate match-quality 
metrics.  

The final stage of the algorithm involves 
interpolation weighted by the distance of the depth-
signatures and these match-quality correlation metrics. 
This stage is necessary since there are a large number 
of configurations, and initial hits with the training set 
might be misleading. Interpolation is especially useful 



when a good match in the training set does not exist, 
while matches around the good match do exist.  

 There are various other tracking and head tracking 
algorithms in the literature. When a point-feature 
tracking algorithm, such as the Lucas-Kanade tracker 
[1,2,3] is applied to faces, it seems to be easily 
confused when the texture of the face changes as a 
result of translation or rotation. Model-based head 
trackers [4,5,6,7,8,9] are therefore preferable. There 
have been different choices of head models in the 
literature. Complex model-based methods usually 
require a separate head model for each person. In other 
words, these methods are not suitable for applications 
where one model needs to fit any person. Some 
researchers have reported that the use of more 
simplistic methods resulted in robust tracking. For 
example, Stan Birchfield’s [10] head tracking 
algorithm shows good results, yet the system seems to 
fail with complex backgrounds. In addition, his 
optimization is based on full search, which limits its 
use in real time applications. Various researchers have 
applied tracking based on depth images. Yang and 
Zhang [11] have applied head tracking using stereo-
vision. This work is still dependent on the brightness 
information due to the nature of stereo imaging, and 
thus it is sensitive to cluttered backgrounds or 
illumination conditions. Malassiotis and Strintzis [12] 
have recently proposed a head tracking algorithm 
based on range images obtained using color coded 
structured light. Their work models the images using a 
Gaussian mixture of head and torso. Since the arm or 
hands have not been modeled, this work would fail 
under challenging configurations. Recently, various 
researchers illustrated the use of recognition and 
interpolation framework for tracking. Tomasi [13] 
described a tracking technique based on classification 
followed by interpolation, with application to hand 
posture tracking. Similarly, Nayar [14] has proposed 
an appearance-based recognition scheme for 
controlling a robot arm via tracking. He uses PCA, and 
this might result in ruling out configurations that do 
not occur frequently. Nayar’s and Tomasi’s 
appearance-based recognition approach provides 
several advantages for the tracking task. First, posing 
the recognition metric in the image space rather than a 
derived representation is very powerful, since the data 
may provide a better representation than abstractions 
for many cases. At the same time, appearance-based 
recognition has various disadvantages as well. 
Segmentation and object detection is still an issue. In 
addition, it has limited power for interpolation and to 
generalize to novel conditions. 

This paper differentiates itself from previous work 
in various means. First, novel depth sensing hardware 

is used to generate the input images. Use of depth 
images provides various benefits such as invariance to 
cluttered background, texture of the face, and 
orientation of the head. There is a vast amount of 
research in 3D object tracking and 3D object 
signatures. Our work combines these contributions 
with a recognition based framework, and is unique in 
its data-driven approach. The use of recognition based 
tracking has various advantages. First of all, there is no 
need to generate an articulated head/face model nor to 
characterize its parameters. The model is automatically 
learnt in the recognition framework. We also 
differentiate ourselves from more recent appearance 
and recognition based tracking work. First, our depth 
images assure that the foreground objects can be 
segmented from the background, thereby solving the 
object segmentation and detection problems. We 
provide a scheme to obtain compressed features from 
depth images. Next, we apply a knowledge-based 
recognition framework based on clustering of labeled 
data. This assures that no important configuration is 
missed. Our interpolation scheme uses a correlation 
metric, assuring that it does not get distracted by 
mismatches. Another advantage is the robustness of 
the proposed framework. Similarly to other tracking 
algorithms, the track might temporarily be lost, yet it is 
recovered quickly since the framework is dependent on 
finding a good match in the training set, rather than 
performing a local search in parameter space.    

The paper continues as follows: First, we give an 
overview of the working principle of the time-of-flight 
sensor. Next, we discuss our recognition-based head-
tracking algorithm. In the following sections, we 
describe the depth-based signatures, knowledge-based 
clustering algorithm, signature matching, and 
correlation based interpolation respectively. Finally, 
we show experiments and results, and close with our 
conclusions and discussions. 
 
2. Time-Of-Flight Depth Sensor 
 

The Canesta time-of-flight imaging system was 
used in our experiments to produce the depth map. The 
system consists of a modulated light source such as a 
laser, a CMOS sensor consisting of an array of pixels 
each capable of detecting the intensity and phase of the 
incoming light, and an optical system for focusing.  

Distance is computed from the phase of the 
modulation envelope of transmitted infrared light as 
received at a pixel. Let s(t)=sin(2π fmt) be the 
transmitted light where fm is the modulation frequency. 
The light is reflected from a target, and returns back to 
a sensor pixel with a phase shift φ: 
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where R is the amplitude of the reflected light, d is the 
distance between the sensor and the target and c is the 
speed of light, 3x108 m/s. The distance d can be 
calculated from the phase shift as follows: 

Lens 
Target Sensor 

 
d 

mf
cd
π
φ

4
=  

Figure 1. Modulated light reflects back from the 
targets, and the time of flight is used to measure the 
depth d. 

A depth image is constructed by measuring the 
distance d at every pixel. Similarly, a brightness image 
is constructed via measuring R at every pixel. The 
phase detection was implemented in CMOS circuitry 
as described in [15, 16].  

 

The time of flight sensor is different from other 
depth sensor in various ways. First, unlike stereo, it is 
texture independent. The amount of post-processing is 
minimal or none, giving application-processing more 
time for real time operability, and very fast frame rates 
can be obtained if needed. It uses flood light, as 
opposed to structured light, and the system can be 
triggered even with a small amount of light. This 
provides a comparable advantage over structured light 
systems, since there is no moving light part and no 
resulting eye-safety problem. The system does not 
necessitate a baseline between the light source and the 
camera, and as such there is no parallax shadows. 
Finally, the depth sensor is implemented on a CMOS 
chip, and this provides an inexpensive and relatively 
high-resolution depth sensor for computer vision. 

Figure 2. An example depth image. The pixels become 
darker as the objects are closer to the camera. 

 

An example depth image of a person is shown in 
Figure 2. Here, we color code the images such that the 
background is uniform in color, and foreground pixels 
are darker where the scene is closer to the camera. The 
output depth images are used as input video sequences 
to our tracking algorithm as described next.  

 Figure 3. Image illustrating the ri and ci vectors 
obtained out of an image. 3. Overview of the Recognition-Based 

Tracking Algorithm  
 In the testing or tracking stage, each frame is 

processed to obtain its depth signature. First, the 
signatures in the training set are compared against the 
signature of the test frame. This provides a number of 
most likely matches. Next, a correlation metric is 
calculated between these and the test image. Finally, 
location of the head is determined via interpolation 
between the most likely matches using the correlation 
metric. Details are described next. 

The algorithm has two main stages, a training stage, 
and a testing or tracking stage. In the training stage, 
long sequences of movies are captured from multiple 
people. A depth-signature is calculated on each frame 
as described in the following section. In addition, a 
window around the head location is manually 
identified on each frame. The training algorithm 
consists of a knowledge-based clustering algorithm. 
The resulting output is a set of good representative 
signatures for possible head locations. 

 



 
4. Depth Signatures 
 

Each depth image is processed to create a depth 
signature. Since the signatures are later used for 
tracking the position of the head, we need features that 
are sensitive to shape variations and translations. 
Specifically, a 134-dimensional feature vector, fi for 
each image i Ii is created: 

[ ]Tiiiiii crwmf σ=  
where mi and σi are the mean and standard deviation of 
the depth values in Ii, wi is a vector that contains the 
upper left and bottom right locations of the window 
around the head, and ri and ci are two vectors where 
the jth values ri
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Here, Ii(m,n) is the value of the depth image at row m 
and column n, and K is a constant. In other words, ri 
and ci are modified row and column sums of the image 
Ii. These vectors are illustrated in Figure 3. The 
components ri and ci compress the whole depth image 
into a vector of length equivalent to sum of the number 
of rows and columns. While doing so, it still keeps the 
relevant information in the depth image. 
 
5. Training via Knowledge-Based 
Clustering 
 

Cluster-based learning is applied to the depth 
signatures. One possibility is to apply clustering or 
learning directly on the training set. K-means 
clustering or principal component analysis can be 
applied for this purpose. However, these approaches 
are diversely affected by the number of occurrences of 
cases. For instance, principal component analysis 
would treat a case that happens very infrequently as 
noise.  

Instead, we apply clustering only after we divide 
the signatures into buckets of possible head locations. 
We use a modified vector quantization for this 
purpose. First, the image is divided into windows. 
Next, the signature of each training image is assigned 
into the window where the head is located in that 
image. After this assignment, each window contains a 
number of signatures.  

Finally, signatures that fall in each window are 
clustered using k-means clustering. We apply an 
iterative k-means algorithm [17] where we start from a 
relatively large k, and iterate until each cluster has 
sufficient number of elements. At each iteration, we 
decrease k by eliminating the clusters with insufficient 

number of elements. The signatures that are closest to 
the final cluster centers and the images associated with 
them are kept as the representative depth signatures 
and representative images to be used in signature 
matching and tracking.  
 
6. Signature Matching and Correlation 
Based Interpolation 
 

Tracking consists of signature matching followed 
by correlation-based interpolation. First, the signature 
of the input depth image is obtained and compared 
with the signatures in the training set that remain after 
knowledge-based clustering. This provides best 
matches. It is possible that there are completely 
different configurations within these best matches. To 
avoid getting affected by bad matches, we apply 
correlation between the possible matches and the test 
image. Finally, we interpolate between the remaining 
matches to obtain the final head location.  

The input is the depth image of the tracking scene. 
First, a signature of the input depth image is obtained 
as described in Section 4. Next, the signature is 
compared against the representative signatures that 
were obtained using knowledge-based clustering. Let fi 
and fj be the signatures of the tracking image and a 
cluster center respectively: 

[ ]Tiiiiii crwmf σ=
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The window of the previous tracked-frame is used 

as window wi. The distance Dij between fi and fj is 
created as follows:  
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where sign() and M() are sign and median operations 
respectively, and K1...K5 are constants. Typical values 
of these constants are 0.1, 0.1, 0.1, 1, 1 respectively.  
Once the distance Dij is obtained for every cluster 
center j in the training set, the most likely detections 
are obtained as the cluster centers with a small distance 
Dij. Examples of possible detections are given in 
Figure 4 with rectangles with thin edges. The possible 
detections are later evaluated by a correlation metric as 
described next.  

Each possible location suggests a window wj for the 
location of the head. Let Ii be the tracked depth image 
and Ij be the image corresponding to a possible match 
j. First Ii and Ij are normalized around the window wj to 



obtain the normalized depth image patches Ni and Nj 
respectively: 

 

),(1
),(),(

,
, lkI

W

nmInmN

j

j

wlk
i

j

i

wnm

i

∑
∈

∈

=    

),(1
),(

),(

,
, lkI

W

nmI
nm

j

j
wlk

j
j

j

wnm

j

∑
∈

∈

=N  

 
where Wj is the number of elements in window wj. The 
correlation metric Cij between the normalized image 
patches Ni and Nj is obtained as follows:  
 Figure 4. Example of Possible Detections 
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Next, we provide examples of tracking frames from 

the three test movies in Figure 6, 7, 8 and 9 
respectively. As one can see, there are various 
challenging configurations of the head. The system is 
able to track the head in these challenging 
configurations, such as the hand is in the image (Figure 
6, and 8), or such as the head is partially occluded by 
the hand (Figure 8), or the head was barely visible due 
to lack of light (Figure 5) or where only a portion of 
the head is visible in the image (Figure 6 and 7), or 
where the head made extreme rotations (Figure 6 and 
7). Sometimes, the head might be temporarily out of 
track when the head is out of picture or it is totally 
occluded. The system easily gets back into track when 
a good match is found between the training set and the 
test images.  

Once the correlation metric for each possible detection 
j=1…n is determined, the location of the head location 
(w) is determined by an interpolation scheme given as 
follows: 
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where K6 and K7 are constants. Typical values are 1 to 
5. In other words, the final detection w is an 
interpolated window between the possible matches. 
The interpolation is useful, since the training set does 
not necessarily cover all possible head locations, and 
interpolation assures that in-between configurations 
can be constructed. To evaluate the performance of the algorithm, we 

calculate the area-wise overlap with the algorithm 
detection and the manually picked ground truth. We 
provide a curve for test movies where the subject was 
also part of our training set (Figure 10) and for test 
movies where the subject was not (Figure 11). The x 
axis is the amount of area-wise overlap, and the y-axis 
is the fraction that had at least that percentage of 
overlap (e.g. this is analogous to a cumulative 
probability function). On average, 60 percent overlap 
corresponded to a mismatch of 2 pixels in x and y on 
the head center. An 80 percent overlap corresponded a 
mismatch of 1 pixel in x and y on the head center. We 
observe robust results such that there is at least 70 (60) 
percent overlap on 85 (95) percent of the frames for 
the cases where the subject was also included in the 
training set (Figure 10). We also observe that there is 
at least 70 (60) percent overlap on 80 (90) percent of 
the frames for the cases where the subject was not 
included in the training set (Figure 11).  All the 
processing was executed in real time using Microsoft 
Visual C/C++ on a Pentium 3 Processor. 

 
7. Experiments and Results 
 

We have conducted experiments on a set of 10 
sequences with 8 people, for a total of 2287 depth 
frames. We used the Canesta time-of-flight depth 
sensor, which provided 64x64 depth images at a frame 
rate of 30 fps. Next, we constructed a training set from 
the set of movies. We obtained signatures for each 
frame in the movies, which we clustered into 1443 
frames. These included cases at 274 different head 
locations in the image. 

Then, we constructed a testing set with movies from 
six people that also had movies in the training set, and 
two people that did not have any movies in the training 
set. We manually chose the head location in each 
image so that we could compare the experiment results 
with the manually selected ground truth. 

Figure 5 shows the benefits of interpolation: 
possible head locations are identified by the thin lines, 
and the resultant head location by the thick line. This 
corrects satisfactorily for wrong initial matches, and 
for cases where the exact location does not exist in the 
training set. 

 
 



8. Conclusions [8] S.B. Gokturk, J.Y. Bouguet, R. Grzeszczuk, “A data 
driven model for monocular face tracking”, ICCV, 2001, 
701-708. 

This paper illustrated the use of a time-of-flight depth 
sensor for a head tracking application. In our problem, 
we aimed to obtain a robust head-tracking algorithm 
that would track challenging cases such as various 
configurations that involved the head and the hand, 
partial occlusions, partial out of image positions. 

[9] S.B. Gokturk, J.Y. Bouguet, C. Tomasi, B. Girod, 
“Model-Based Face tracking for View-Independent Facial 
Expression Recognition”, IEEE In.l Conf. on Face and 
Gesture Recognition , 2002, 272-278. 
[10] S. Birchfield, “Elliptical Head Tracking Using Intensity 
Gradients and Color Histograms”, CVPR, 1998, 232-237. Our algorithm applies recognition followed by 

interpolation.  We use a knowledge-based training 
algorithm, where the data is first divided into initial 
clusters depending on where the head is located at the 
particular frame. Then, a modified k-means clustering 
is applied to cluster the data in the initial cluster. 
Knowledge-based clustering assures that all possible 
cases are accounted for in the training set. 

[11] R. Yang and Z. Zhang: "Model-Based Head Pose 
Tracking Using Stereovision", IEEE In.l Conf. on Face and 
Gesture Recognition , 2002, 242-247. 
[12] S.Malassiotis and M.G.Strintzis: "Real-time Head 
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[13] C. Tomasi, S. Petrov and A. Sastry. 3D tracking = 
classification + interpolation. ICCV, 2003, 1441-1448. While testing a new frame, we first find a set of 

possible matches from the training set. Due to the 
complexity of the head/body configurations, it is 
possible that there are wrong matches. We calculate a 
correlation metric between the possible matches and 
the test image, for use in the final interpolation. 

[14] S. K. Nayar, S. A. Nene, and H. Murase, “Subspace 
Methods for Robot Vision”, IEEE Trans RA, 1996, 12(5) – 
750-758. 
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[16] C. Bamji, E. Charbon, “CMOS Compatible Three-
Dimensional Image Sensing Using Reduced Peak Energy”, 
U.S. Patent No: 6,580,496. 

The paper makes various contributions. First, we 
suggest using the depth images for robust head-
tracking, since it is easier to infer geometry and 3D 
location from depth images. Next, we provide a fast 
recognition and interpolation based head tracking 
algorithm. This algorithm is robust in various 
configurations, since it never gets into a local search 
deadlock when the track is temporarily lost. The 
proposed signatures work best for depth images, 
although the general framework of recognition based 
tracking is applicable to intensity images with the 
appropriate choice of signatures.  

[17] S.B.Gokturk, “Shape Recognition with Application to 
Medical Imaging”, PhD Thesis, Stanford University, 2002. 
 
 

   
Figure 5. Examples of interpolation. Correlation based 
metric helps avoiding distraction by initial mismatches.  
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Figure 7. Tracking results on another movie. Frames – 
1, 4, 18, 44, 53, 79. The head is tracked in instances 
where the head is mostly out of picture, or where the 
hand is in the picture, providing confusing 
configurations. 

 

 
 

   
Figure 10. Performance curves from test movies where 
the subject was also participating in training movies. 
Each curve corresponds to another test movie. 

   

 

 

Figure 8. Tracking results on another movie. 
Frames 8, 15, 50, 63, 92, 132. The head is tracked 
under extreme rotations. 

 
Figure 11. Performance curves resulting from test 
movies where the subject was not participating in 
training movies. Each curve corresponds to another 
test movie. 

 

   
Figure 9. Tracking results on another movie. The 

head is partially occluded by the hand on these frames. 
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