
3D Head Tracking Based on Recognition and Interpolation Using a Time-Of-
Flight Depth Sensor

 Salih Burak Göktürk1 and Carlo Tomasi1,2
1Canesta Inc., 2Duke University

bgokturk@canesta.com, tomasi@cs.duke.edu

Abstract

This paper describes a head-tracking algorithm
that is based on recognition and correlation-based
weighted interpolation. The input is a sequence of 3D
depth images generated by a novel time-of-flight depth
sensor. These are processed to segment the
background and foreground, and the latter is used as
the input to the head tracking algorithm, which is
composed of three major modules: First, a depth
signature is created out of the depth images. Next, the
signature is compared against signatures that are
collected in a training set of depth images. Finally, a
correlation metric is calculated between most possible
signature hits. The head location is calculated by
interpolating among stored depth values, using the
correlation metrics as the weights. This combination
of depth sensing and recognition-based head tracking
provides more than 90 percent success. Even if the
track is temporarily lost, it is easily recovered when a
good match is obtained from the training set. The use
of depth images and recognition-based head tracking
achieves robust real-time tracking results under
extreme conditions such as 180-degree rotation,
temporary occlusions, and complex backgrounds.

1. Introduction

Head tracking is a key component in applications
such as human computer interaction, person
monitoring, driver monitoring, video conferencing, and
object-based compression. All of these applications
require robust, and real-time (or near real time)
tracking. On the other hand, head tracking algorithms
are known to lose track during an abrupt movement, or
during rotation of the face in a video sequence. A
practical solution should expect the underlying
tracking algorithm to fail, and should provide easy
recovery.

In this paper, we address the tracking problem for a
person sitting in front of the camera. The background

can potentially be a cluttered background. The person
is free to rotate his or her head and body as much as
180 degrees, to partially move out of the picture, or to
partially occlude his or her head. We aim to provide a
robust solution that covers all possible above-
mentioned conditions, while retaining a reprojection
accuracy of within a few pixels.

Our system uses a time-of-flight based depth sensor
to generate the input images. Depth images are suitable
to our problem in various ways. First, depth images
provide geometry information directly, as opposed to
the photometric information contained in intensity
images. For example, the cluttered background can be
eliminated via depth segmentation. Next, finding the
head’s location in the image also provides depth, and
therefore characterizes the head’s 3D location fully.
Third, the depth image is not affected much by the
texture on a face or environmental illumination
conditions, and the tracker does not get out of track
even with full rotations of the head and body.

Our recognition-based head tracking algorithm
involves a training and a testing stage. During training,
knowledge-based clustering is applied to construct
clusters of signatures for a dense sampling of locations
of the head in the depth image. Each location
(including z values) is used as the corresponding label
in a supervised clustering algorithm. This assures that
we keep every individual configuration in a particular
location while still compressing the training data for
efficiency purposes. In the testing stage, the signature
of a test image is compared against the signatures
stored with the training clusters. Once all satisfactory
matches are determined, correlation values between
new and stored depth images are computed around the
possible head location to generate match-quality
metrics.

The final stage of the algorithm involves
interpolation weighted by the distance of the depth-
signatures and these match-quality correlation metrics.
This stage is necessary since there are a large number
of configurations, and initial hits with the training set
might be misleading. Interpolation is especially useful

when a good match in the training set does not exist,
while matches around the good match do exist.

 There are various other tracking and head tracking
algorithms in the literature. When a point-feature
tracking algorithm, such as the Lucas-Kanade tracker
[1,2,3] is applied to faces, it seems to be easily
confused when the texture of the face changes as a
result of translation or rotation. Model-based head
trackers [4,5,6,7,8,9] are therefore preferable. There
have been different choices of head models in the
literature. Complex model-based methods usually
require a separate head model for each person. In other
words, these methods are not suitable for applications
where one model needs to fit any person. Some
researchers have reported that the use of more
simplistic methods resulted in robust tracking. For
example, Stan Birchfield’s [10] head tracking
algorithm shows good results, yet the system seems to
fail with complex backgrounds. In addition, his
optimization is based on full search, which limits its
use in real time applications. Various researchers have
applied tracking based on depth images. Yang and
Zhang [11] have applied head tracking using stereo-
vision. This work is still dependent on the brightness
information due to the nature of stereo imaging, and
thus it is sensitive to cluttered backgrounds or
illumination conditions. Malassiotis and Strintzis [12]
have recently proposed a head tracking algorithm
based on range images obtained using color coded
structured light. Their work models the images using a
Gaussian mixture of head and torso. Since the arm or
hands have not been modeled, this work would fail
under challenging configurations. Recently, various
researchers illustrated the use of recognition and
interpolation framework for tracking. Tomasi [13]
described a tracking technique based on classification
followed by interpolation, with application to hand
posture tracking. Similarly, Nayar [14] has proposed
an appearance-based recognition scheme for
controlling a robot arm via tracking. He uses PCA, and
this might result in ruling out configurations that do
not occur frequently. Nayar’s and Tomasi’s
appearance-based recognition approach provides
several advantages for the tracking task. First, posing
the recognition metric in the image space rather than a
derived representation is very powerful, since the data
may provide a better representation than abstractions
for many cases. At the same time, appearance-based
recognition has various disadvantages as well.
Segmentation and object detection is still an issue. In
addition, it has limited power for interpolation and to
generalize to novel conditions.

This paper differentiates itself from previous work
in various means. First, novel depth sensing hardware

is used to generate the input images. Use of depth
images provides various benefits such as invariance to
cluttered background, texture of the face, and
orientation of the head. There is a vast amount of
research in 3D object tracking and 3D object
signatures. Our work combines these contributions
with a recognition based framework, and is unique in
its data-driven approach. The use of recognition based
tracking has various advantages. First of all, there is no
need to generate an articulated head/face model nor to
characterize its parameters. The model is automatically
learnt in the recognition framework. We also
differentiate ourselves from more recent appearance
and recognition based tracking work. First, our depth
images assure that the foreground objects can be
segmented from the background, thereby solving the
object segmentation and detection problems. We
provide a scheme to obtain compressed features from
depth images. Next, we apply a knowledge-based
recognition framework based on clustering of labeled
data. This assures that no important configuration is
missed. Our interpolation scheme uses a correlation
metric, assuring that it does not get distracted by
mismatches. Another advantage is the robustness of
the proposed framework. Similarly to other tracking
algorithms, the track might temporarily be lost, yet it is
recovered quickly since the framework is dependent on
finding a good match in the training set, rather than
performing a local search in parameter space.

The paper continues as follows: First, we give an
overview of the working principle of the time-of-flight
sensor. Next, we discuss our recognition-based head-
tracking algorithm. In the following sections, we
describe the depth-based signatures, knowledge-based
clustering algorithm, signature matching, and
correlation based interpolation respectively. Finally,
we show experiments and results, and close with our
conclusions and discussions.

2. Time-Of-Flight Depth Sensor

The Canesta time-of-flight imaging system was
used in our experiments to produce the depth map. The
system consists of a modulated light source such as a
laser, a CMOS sensor consisting of an array of pixels
each capable of detecting the intensity and phase of the
incoming light, and an optical system for focusing.

Distance is computed from the phase of the
modulation envelope of transmitted infrared light as
received at a pixel. Let s(t)=sin(2π fmt) be the
transmitted light where fm is the modulation frequency.
The light is reflected from a target, and returns back to
a sensor pixel with a phase shift φ:

c
dt-fRt-fRtr mm))2(2sin()2sin()(πφπ == Light source

where R is the amplitude of the reflected light, d is the
distance between the sensor and the target and c is the
speed of light, 3x108 m/s. The distance d can be
calculated from the phase shift as follows:

Lens
Target Sensor

d

mf
cd
π
φ

4
=

Figure 1. Modulated light reflects back from the
targets, and the time of flight is used to measure the
depth d.

A depth image is constructed by measuring the
distance d at every pixel. Similarly, a brightness image
is constructed via measuring R at every pixel. The
phase detection was implemented in CMOS circuitry
as described in [15, 16].

The time of flight sensor is different from other
depth sensor in various ways. First, unlike stereo, it is
texture independent. The amount of post-processing is
minimal or none, giving application-processing more
time for real time operability, and very fast frame rates
can be obtained if needed. It uses flood light, as
opposed to structured light, and the system can be
triggered even with a small amount of light. This
provides a comparable advantage over structured light
systems, since there is no moving light part and no
resulting eye-safety problem. The system does not
necessitate a baseline between the light source and the
camera, and as such there is no parallax shadows.
Finally, the depth sensor is implemented on a CMOS
chip, and this provides an inexpensive and relatively
high-resolution depth sensor for computer vision.

Figure 2. An example depth image. The pixels become
darker as the objects are closer to the camera.

An example depth image of a person is shown in
Figure 2. Here, we color code the images such that the
background is uniform in color, and foreground pixels
are darker where the scene is closer to the camera. The
output depth images are used as input video sequences
to our tracking algorithm as described next.

 Figure 3. Image illustrating the ri and ci vectors
obtained out of an image. 3. Overview of the Recognition-Based

Tracking Algorithm
 In the testing or tracking stage, each frame is

processed to obtain its depth signature. First, the
signatures in the training set are compared against the
signature of the test frame. This provides a number of
most likely matches. Next, a correlation metric is
calculated between these and the test image. Finally,
location of the head is determined via interpolation
between the most likely matches using the correlation
metric. Details are described next.

The algorithm has two main stages, a training stage,
and a testing or tracking stage. In the training stage,
long sequences of movies are captured from multiple
people. A depth-signature is calculated on each frame
as described in the following section. In addition, a
window around the head location is manually
identified on each frame. The training algorithm
consists of a knowledge-based clustering algorithm.
The resulting output is a set of good representative
signatures for possible head locations.

4. Depth Signatures

Each depth image is processed to create a depth
signature. Since the signatures are later used for
tracking the position of the head, we need features that
are sensitive to shape variations and translations.
Specifically, a 134-dimensional feature vector, fi for
each image i Ii is created:

[]Tiiiiii crwmf σ=
where mi and σi are the mean and standard deviation of
the depth values in Ii, wi is a vector that contains the
upper left and bottom right locations of the window
around the head, and ri and ci are two vectors where
the jth values ri

j and ci
j are obtained as follows:

∑
>∀

=
0),(,

),(
kjIk

i
j

i
i

kjIr , c . ()∑
>∀

−=
0),(,

),(
jkIk

i
j

i
i

jkIK

Here, Ii(m,n) is the value of the depth image at row m
and column n, and K is a constant. In other words, ri
and ci are modified row and column sums of the image
Ii. These vectors are illustrated in Figure 3. The
components ri and ci compress the whole depth image
into a vector of length equivalent to sum of the number
of rows and columns. While doing so, it still keeps the
relevant information in the depth image.

5. Training via Knowledge-Based
Clustering

Cluster-based learning is applied to the depth
signatures. One possibility is to apply clustering or
learning directly on the training set. K-means
clustering or principal component analysis can be
applied for this purpose. However, these approaches
are diversely affected by the number of occurrences of
cases. For instance, principal component analysis
would treat a case that happens very infrequently as
noise.

Instead, we apply clustering only after we divide
the signatures into buckets of possible head locations.
We use a modified vector quantization for this
purpose. First, the image is divided into windows.
Next, the signature of each training image is assigned
into the window where the head is located in that
image. After this assignment, each window contains a
number of signatures.

Finally, signatures that fall in each window are
clustered using k-means clustering. We apply an
iterative k-means algorithm [17] where we start from a
relatively large k, and iterate until each cluster has
sufficient number of elements. At each iteration, we
decrease k by eliminating the clusters with insufficient

number of elements. The signatures that are closest to
the final cluster centers and the images associated with
them are kept as the representative depth signatures
and representative images to be used in signature
matching and tracking.

6. Signature Matching and Correlation
Based Interpolation

Tracking consists of signature matching followed
by correlation-based interpolation. First, the signature
of the input depth image is obtained and compared
with the signatures in the training set that remain after
knowledge-based clustering. This provides best
matches. It is possible that there are completely
different configurations within these best matches. To
avoid getting affected by bad matches, we apply
correlation between the possible matches and the test
image. Finally, we interpolate between the remaining
matches to obtain the final head location.

The input is the depth image of the tracking scene.
First, a signature of the input depth image is obtained
as described in Section 4. Next, the signature is
compared against the representative signatures that
were obtained using knowledge-based clustering. Let fi
and fj be the signatures of the tracking image and a
cluster center respectively:

[]Tiiiiii crwmf σ=

[]jjjjjj crwmf σ= T
The window of the previous tracked-frame is used

as window wi. The distance Dij between fi and fj is
created as follows:

∑

∑
−−−+

−−−+

−+−+−=

k
j

k
ji

k
i

k
j

k
ji

k
i

jijijiij

cMcsigncMcsignK

rMrsignrMrsignK

wwKKmmKD

))(())((

))(())((

5

4

321 σσ

where sign() and M() are sign and median operations
respectively, and K1...K5 are constants. Typical values
of these constants are 0.1, 0.1, 0.1, 1, 1 respectively.
Once the distance Dij is obtained for every cluster
center j in the training set, the most likely detections
are obtained as the cluster centers with a small distance
Dij. Examples of possible detections are given in
Figure 4 with rectangles with thin edges. The possible
detections are later evaluated by a correlation metric as
described next.

Each possible location suggests a window wj for the
location of the head. Let Ii be the tracked depth image
and Ij be the image corresponding to a possible match
j. First Ii and Ij are normalized around the window wj to

obtain the normalized depth image patches Ni and Nj
respectively:

),(1
),(),(

,
, lkI

W

nmInmN

j

j

wlk
i

j

i

wnm

i

∑
∈

∈

=

),(1
),(

),(

,
, lkI

W

nmI
nm

j

j
wlk

j
j

j

wnm

j

∑
∈

∈

=N

where Wj is the number of elements in window wj. The
correlation metric Cij between the normalized image
patches Ni and Nj is obtained as follows:
 Figure 4. Example of Possible Detections

∑ −=
nm

ijij nmNnmNC
,

),(),(
Next, we provide examples of tracking frames from

the three test movies in Figure 6, 7, 8 and 9
respectively. As one can see, there are various
challenging configurations of the head. The system is
able to track the head in these challenging
configurations, such as the hand is in the image (Figure
6, and 8), or such as the head is partially occluded by
the hand (Figure 8), or the head was barely visible due
to lack of light (Figure 5) or where only a portion of
the head is visible in the image (Figure 6 and 7), or
where the head made extreme rotations (Figure 6 and
7). Sometimes, the head might be temporarily out of
track when the head is out of picture or it is totally
occluded. The system easily gets back into track when
a good match is found between the training set and the
test images.

Once the correlation metric for each possible detection
j=1…n is determined, the location of the head location
(w) is determined by an interpolation scheme given as
follows:

()

()∑

∑

=

== n

j

K
ij

K
ij

n

j
j

K
ij

K
ij

CD

wCD
w

1

1

76

76

where K6 and K7 are constants. Typical values are 1 to
5. In other words, the final detection w is an
interpolated window between the possible matches.
The interpolation is useful, since the training set does
not necessarily cover all possible head locations, and
interpolation assures that in-between configurations
can be constructed. To evaluate the performance of the algorithm, we

calculate the area-wise overlap with the algorithm
detection and the manually picked ground truth. We
provide a curve for test movies where the subject was
also part of our training set (Figure 10) and for test
movies where the subject was not (Figure 11). The x
axis is the amount of area-wise overlap, and the y-axis
is the fraction that had at least that percentage of
overlap (e.g. this is analogous to a cumulative
probability function). On average, 60 percent overlap
corresponded to a mismatch of 2 pixels in x and y on
the head center. An 80 percent overlap corresponded a
mismatch of 1 pixel in x and y on the head center. We
observe robust results such that there is at least 70 (60)
percent overlap on 85 (95) percent of the frames for
the cases where the subject was also included in the
training set (Figure 10). We also observe that there is
at least 70 (60) percent overlap on 80 (90) percent of
the frames for the cases where the subject was not
included in the training set (Figure 11). All the
processing was executed in real time using Microsoft
Visual C/C++ on a Pentium 3 Processor.

7. Experiments and Results

We have conducted experiments on a set of 10
sequences with 8 people, for a total of 2287 depth
frames. We used the Canesta time-of-flight depth
sensor, which provided 64x64 depth images at a frame
rate of 30 fps. Next, we constructed a training set from
the set of movies. We obtained signatures for each
frame in the movies, which we clustered into 1443
frames. These included cases at 274 different head
locations in the image.

Then, we constructed a testing set with movies from
six people that also had movies in the training set, and
two people that did not have any movies in the training
set. We manually chose the head location in each
image so that we could compare the experiment results
with the manually selected ground truth.

Figure 5 shows the benefits of interpolation:
possible head locations are identified by the thin lines,
and the resultant head location by the thick line. This
corrects satisfactorily for wrong initial matches, and
for cases where the exact location does not exist in the
training set.

8. Conclusions [8] S.B. Gokturk, J.Y. Bouguet, R. Grzeszczuk, “A data
driven model for monocular face tracking”, ICCV, 2001,
701-708.

This paper illustrated the use of a time-of-flight depth
sensor for a head tracking application. In our problem,
we aimed to obtain a robust head-tracking algorithm
that would track challenging cases such as various
configurations that involved the head and the hand,
partial occlusions, partial out of image positions.

[9] S.B. Gokturk, J.Y. Bouguet, C. Tomasi, B. Girod,
“Model-Based Face tracking for View-Independent Facial
Expression Recognition”, IEEE In.l Conf. on Face and
Gesture Recognition , 2002, 272-278.
[10] S. Birchfield, “Elliptical Head Tracking Using Intensity
Gradients and Color Histograms”, CVPR, 1998, 232-237. Our algorithm applies recognition followed by

interpolation. We use a knowledge-based training
algorithm, where the data is first divided into initial
clusters depending on where the head is located at the
particular frame. Then, a modified k-means clustering
is applied to cluster the data in the initial cluster.
Knowledge-based clustering assures that all possible
cases are accounted for in the training set.

[11] R. Yang and Z. Zhang: "Model-Based Head Pose
Tracking Using Stereovision", IEEE In.l Conf. on Face and
Gesture Recognition , 2002, 242-247.
[12] S.Malassiotis and M.G.Strintzis: "Real-time Head
Tracking and 3D Pose Estimation from Range Data", ICIP
2003, 859-862.
[13] C. Tomasi, S. Petrov and A. Sastry. 3D tracking =
classification + interpolation. ICCV, 2003, 1441-1448. While testing a new frame, we first find a set of

possible matches from the training set. Due to the
complexity of the head/body configurations, it is
possible that there are wrong matches. We calculate a
correlation metric between the possible matches and
the test image, for use in the final interpolation.

[14] S. K. Nayar, S. A. Nene, and H. Murase, “Subspace
Methods for Robot Vision”, IEEE Trans RA, 1996, 12(5) –
750-758.
[15] C. Bamji, “CMOS Compatible 3-D Image Sensor”, U.S.
Patent No: 6,323,942.
[16] C. Bamji, E. Charbon, “CMOS Compatible Three-
Dimensional Image Sensing Using Reduced Peak Energy”,
U.S. Patent No: 6,580,496.

The paper makes various contributions. First, we
suggest using the depth images for robust head-
tracking, since it is easier to infer geometry and 3D
location from depth images. Next, we provide a fast
recognition and interpolation based head tracking
algorithm. This algorithm is robust in various
configurations, since it never gets into a local search
deadlock when the track is temporarily lost. The
proposed signatures work best for depth images,
although the general framework of recognition based
tracking is applicable to intensity images with the
appropriate choice of signatures.

[17] S.B.Gokturk, “Shape Recognition with Application to
Medical Imaging”, PhD Thesis, Stanford University, 2002.

Figure 5. Examples of interpolation. Correlation based
metric helps avoiding distraction by initial mismatches.

10. References
[1] B.D. Lucas, and T. Kanade, “An iterative image
registration technique with an application to stereo
vision“,Proc. 7th IJCAI, 1981, 674-679.

[2] J. Shi, C. Tomasi, Good Features To Track, CVPR , 1994,
594-600.
[3] J. Barron, D. Fleet, D. and S. Beauchemin, “Performance
of optical flow techniques”, IJCV, 1994, 43-78.
[4] D. DeCarlo, and D. Metaxas, “Deformable model-based
face shape and motion estimation”, Proc. 2nd Int.l Conf. on
Automatic Face and Gesture Recognition, 1996, 146-150.

[5] D. DeCarlo, and D. Metaxas, ”The Integration of Optical
Flow and Deformable Models with Applications to Human
Face Shape and Motion Estimation”, CVPR, 1996, 231-238.
[6] P. Eisert, and B. Girod, “Model-based Facial Expression
Parameters from Image Sequences”, Proc. IEEE
International Conference on Image Processing, Santa
Barbara, CA, USA, 1997, 418-421.

Figure 6. Tracking results from a movie. Frames – 1,
17, 22, 27, 58, 93. The head is successfully tracked in
various distance and location of the head. [7] P. Eisert, and B. Girod, “Analyzing Facial Expressions

for Virtual Conferencing”, IEEE Comp. Graphics and Appl.,
Computer Animation for Virtual Humans, 1998, 70-78.

Figure 7. Tracking results on another movie. Frames –
1, 4, 18, 44, 53, 79. The head is tracked in instances
where the head is mostly out of picture, or where the
hand is in the picture, providing confusing
configurations.

Figure 10. Performance curves from test movies where
the subject was also participating in training movies.
Each curve corresponds to another test movie.

Figure 8. Tracking results on another movie.
Frames 8, 15, 50, 63, 92, 132. The head is tracked
under extreme rotations.

Figure 11. Performance curves resulting from test
movies where the subject was not participating in
training movies. Each curve corresponds to another
test movie.

Figure 9. Tracking results on another movie. The

head is partially occluded by the hand on these frames.

	1. Introduction
	2. Time-Of-Flight Depth Sensor
	3. Overview of the Recognition-Based Tracking Algorithm
	4. Depth Signatures
	5. Training via Knowledge-Based Clustering
	6. Signature Matching and Correlation Based Interpolation
	7. Experiments and Results
	8. Conclusions
	10. References

