
AnyOpt: Predicting andOptimizing IP Anycast Performance

Xiao Zhang
★◦
, Tanmoy Sen

†
, Zheyuan Zhang

†
, Tim April

◦
, Balakrishnan Chandrasekaran

‡
,

David Choffnes
♣
, Bruce M. Maggs

★♦
, Haiying Shen

†
, Ramesh K. Sitaraman

♠◦
, Xiaowei Yang

★

★
Duke University,

◦
Akamai Technologies,

†
University of Virginia,

‡
Vrije Universiteit Amsterdam,

♣
Northeastern University,

♦
Emerald Innovations,

♠
University of Massachusetts Amherst

Abstract
The key to optimizing the performance of an anycast-based sys-

tem (e.g., the root DNS or a CDN) is choosing the right set of sites

to announce the anycast prefix. One challenge here is predicting

catchments. A naïve approach is to advertise the prefix from all

subsets of available sites and choose the best-performing subset,

but this does not scale well. We demonstrate that by conducting

pairwise experiments between sites peering with tier-1 networks,

we can predict the catchments that would result if we announce

to any subset of the sites. We prove that our method is effective in

a simplified model of BGP, consistent with common BGP routing

policies, and evaluate it in a real-world testbed. We then present

AnyOpt, a system that predicts anycast catchments. Using AnyOpt,

a network operator can find a subset of anycast sites that minimizes

client latency without using the naïve approach. In an experiment

using 15 sites, each peeringwith one of six transit providers, AnyOpt

predicted site catchments of 15,300 clients with 94.7% accuracy and

client RTTs with a mean error of 4.6%. AnyOpt identified a subset

of 12 sites, announcing to which lowers the mean RTT to clients by

33ms compared to a greedy approach that enables the same number

of sites with the lowest average unicast latency.

CCS Concepts
•Networks→Network performance analysis;Networkmea-
surement;Network performancemodeling.

Keywords
Anycast, Routing, BGP, Performance Optimization

ACMReference Format:
Xiao Zhang, Tanmoy Sen, Zheyuan Zhang, Tim April, Balakrishnan Chan-

drasekaran, David Choffnes, Bruce M. Maggs, Haiying Shen, Ramesh K.

Sitaraman, Xiaowei Yang. 2021. AnyOpt: Predicting and Optimizing IP Any-

cast Performance. InACM SIGCOMM 2021 Conference (SIGCOMM ’21), Au-
gust 23–27, 2021, Virtual Event, USA. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3452296.3472935

1 Introduction
IP anycast [28, 31] is the practice of announcing the same IP address

prefix from multiple network locations, and it is commonly used

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00

https://doi.org/10.1145/3452296.3472935

for load balancing and latency reduction. In part due to its inherent

support in the routing system and potential for improving perfor-

mance, anycast is used in large and popular services such as DNS

(to distribute DNS query load [27, 36]), content delivery networks

(CDNs) (to reduce latency between servers and clients [7, 12]), and

distributed denial of service (DDoS)mitigation services (to distribute

and scrub attack traffic loads [29, 39]). A key challenge for deploying

anycast services effectively is that mappings between client net-

works and anycast sites (i.e., anycast catchments) are determined by

BGP’s policy-based routing decisions rather than service providers’

goals such as minimizing latency and balancing load. In fact, several

measurement studies have revealed that some anycast catchments

exhibit unexpectedly inflated latency [6], and increasing the number

of anycast sites in a deployment (in an attempt to reduce the distance

between clients and sites) counter-intuitively increases the average

latency for clients and disrupts attempts to balance load [25].

As a result, managing anycast deployments is a challenging task

that requires expert knowledge and continuous intervention in re-

sponse to BGP path changes, regular maintenance [12], or DDoS

attacks [29].Networkoperators lack tools that can accurately predict

the system performance under different anycast configurations (i.e.,

the set of sites making announcements and the next-hop neighbors

to whom the prefix is announced). Since BGP paths are determined

by non-public policy information, such tools will require measure-

ments or inferences for prediction. A naïve approach to measuring

the impact of all potential announcements would require probing

that scales exponentially with the number of sites under consid-

eration. Using inferred topologies [37] to predict catchments can

limit this cost, but it may introduce imprecision because of missing

information in topology models and how BGP routers break ties

among equally preferred paths.

In this paper, we address the above problems by using theoreti-

cal foundations to develop efficient measurement, prediction, and

optimization techniques that allow an anycast operator to optimize

a deployment for low latency while balancing load. This problem

is important because latency is critical to the revenue generation

of many Internet services [41]. Specifically, we present an exper-

imental approach, AnyOpt, for predicting anycast catchments. A

service operator can use AnyOpt to optimize an anycast network’s

deployment or dynamically reconfigure the network.

The key, empirically informed, insight that enables efficient catch-

ment prediction is that most client networks, when given an option

between any two (of potentially many) anycast sites, will consis-

tently prefer one or the other. Further, we find thatwhen considering

all pairs of anycast sites, the set of pairwise preferences for a client
network often forms a total order. This total order makes it straight-

forward to predict a site’s catchment when we enable any subset of

the anycast sites, as most client networks will consistently pick their

447

https://doi.org/10.1145/3452296.3472935
https://doi.org/10.1145/3452296.3472935

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Zhang, et al.

most preferred sites in the subset. Furthermore, we observe that if a

client network has a consistent total order among the anycast sites,

we canmap the anycast optimization problem to the Simple Plant Lo-

cation with Preference Orderings [20] problem and solve it offline to

find the subset of anycast sites that achieve the lowest overall latency.

MakingAnyOpt accurate and efficient, however, requires address-

ing two key challenges. First, we find that not all client networks

exhibit the consistent preferences that enable our approach. We use

both theoretical analyses andmeasurements to understand why this

problem occurs and whether consistent preference orders can pre-

dict a site’s catchment. Our analyses reveal that a client networkmay

not have a total order among preferences for anycast sites when au-

tonomous systems (ASes) on the path of a BGP advertisement assign

different local preferences to the advertisement. We prove sufficient

conditions under which pairwise measurements yield a consistent

total order and the total order is predictive of a client network’s

catchment. One example that meets these conditions is that we only

announce an anycast prefix to tier-1 ISPs, andwe adopt this setup for

our real-world anycast testbed. Our experiments show that another

cause of inconsistent preference orderings is a BGP implementation

choice where ties between equally preferred paths are broken by the

order in which a router receives BGP advertisements, which is not

part of the BGP standard [33] but is implemented by most deployed

routers (e.g., Cisco [1] and Jupiter [2]). Once we take into account

both the policy-induced and implementation-induced inconsistent

preference orders in AnyOpt, we show thatwe can expect consistent

pairwise preferences. Then, we use the total orders constructed from

those pairwise preferences to predict anycast catchments.

Second, we alleviate the issue of scaling AnyOpt measurements

to large anycast deployments, e.g., those with hundreds or more

sites [9]. For a deployment of this size, pairwise preference discov-

ery experiments become impractical. For example, for an anycast

network of 100 sites, if we space each pairwise experiment by two

hours, which is necessary to avoid BGP instability, it would take

years to finish all pairwise experiments. To address this challenge,

we design AnyOpt to take a two-level approach to predict anycast

catchments. The routing structure of the Internetmakes the inter-AS

and intra-AS anycast catchments two separate processes,whereBGP

determines the inter-AS catchments and the (interior) routing inside

an AS determines the intra-AS catchments. Our experiments show

that a site’s catchment at theAS level remains stablewhen an anycast

site is enabled or disabled within the sameAS. Therefore, we can use

pairwise experiments to discover client networks’ AS-level prefer-

ences by choosing one representative site in each tier-1 AS that the

anycast network connects to and run site-level pairwise experiments

for sites within the sameAS. If the latter is still prohibitive for a large

network, we discuss a heuristic approach that might further reduce

the number of BGP experiments needed for catchment prediction.

Ourexperimentsona real-world testbed showthatAnyOpt canac-

curately predict anycast catchments and optimize client latency dis-

tribution,whenannouncingananycastprefix toonly tier-1providers.

We start with tier-1 network providers because they act as the back-

bone network that delivers the majority of the traffic for the testbed

anycast network. To extend beyond the tier-1 providers, we adopt

a heuristic to determine the impact of announcing via a peering link

while simultaneously announcing to the tier-1 providers (§ 4.4).Our

anycast testbed has 15 sites and connects with six tier-1 ASes. In the

evaluation of transit-only configuration, we randomly choose an

anycast configuration, predict its catchments and average latency

to client networks, then deploy the configuration, and measure its

actual catchments and average latency. Then we repeated this for

38 times. We find that AnyOpt predicts catchments with 94.7% ac-

curacy and average RTTs with a mean error of 4.6%. In the offline

configuration searching, AnyOpt identifies a 12-site lowest latency

configuration that reduces the average client latency by more than

30ms compared to to configurations that greedily include sites with

the lowest average unicast latency or randomly chosen sites. For

the peering links, we also iterated through 104 peering links in the

testbedand identified47peering links that can improveperformance;

more specifically, we find that including peering links in the 12-site

lowest-latency configuration can further reduce the mean latency

by 5ms to 7ms.

AnyOpt represents a crucial first step towards predicting and

optimizing the performance of an anycast network. Specifically, this

work makes the following contributions:

(1) We propose AnyOpt, an empirical approach that uses BGP

measurements to reveal a client network’s preferences be-

tween any two anycast sites, and then uses these to predict

and optimize anycast network performance. We report for

the first time the extent to which BGP announcement arrival

orders affect anycast catchments at scale and develop a tech-

nique to incorporate them into the catchment prediction. We

use two-level prediction techniques to reduce the number of

required experiments.

(2) We analyze the theoretical underpinnings for the heuristic

approach and prove sufficient conditions for this approach

to work.

(3) We use a real-world anycast testbed of a large content deliv-

ery network to evaluate AnyOpt. Our experiments show that

AnyOpt can predict anycast performance accurately and can

reduce the average latency to client networks by as much as

33ms (32%) compared to greedy approaches.

Ethical considerations. Active measurements such as issuing

pings and BGP announcements can cause extra load on the Internet

infrastructure. As discussed later in the paper, we mitigate these

concerns by gathering our measurements at reasonably low rates,

and target our measurements at routers (not end hosts). Our BGP

announcements use only prefixes that we control and only our AS

number in our announcements. The anycast prefixes we use do not

serve any clients. This work raises no other ethical issues.

2 Background
In this section, we briefly describe the architecture of an anycast net-

work, define the terms we use, and use real-world anycast systems

to motivate AnyOpt’s design.

2.1 Architecture of an Anycast Network
Figure 1 illustrates the architecture of an anycast network. A service

provider such as a CDN or a DDoS mitigation provider has servers

that receive anycast traffic deployed at multiple locations. These

servers offer services such as traffic scrubbing or caching. We refer

to each location where these servers are deployed as an anycast site.
A site has an onsite router that connects to one or more ASes. We

448

AnyOpt: Predicting and Optimizing IP Anycast Performance SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

AS1

AS2

AS3

AS4

AS5

AS6

AS7

Clients & Catchments

Figure 1: The architecture of an anycast network.

refer to each BGP connection to an outside AS as an ingress point.
In Figure 1, the simple anycast network has three sites, each having

two or three ingress points. We refer to the set of end systems reach-

ing one site as the catchment of the site. Figure 1 groups each site’s
catchment within an oval shape and marks the catchment’s ingress

AS/connection with the same line type.

2.2 Motivating Examples
A key motivating application of our work is the configuration man-

agement of systems such as Akamai DNS [36] or an anycast-based

CDN [7, 12]. Akamai DNS is one of the world’s largest authoritative

DNS systems, servingmillions of queries per second from a few hun-

dred sites that host 24 distinct anycast prefixes. Each anycast prefix

is hosted from a subset of about 30 sites that form an “anycast cloud”.

Each domain name hosted on Akamai DNS is assigned to a delega-

tion set of about 6 anycast prefixes. When a recursive DNS resolver

(i.e., client) requests an authoritative translation of a domain name, it

sends the request to an anycast prefix that is in the delegation set of

that domainname. The request is then routed to a sitewithin that pre-

fix’s anycast cloud by BGP. That site then responds with the answer.

The key challenge in configuring Akamai DNS is assigning each

of the 24 anycast prefixes to a subset of sites such that the average

query response latencyexperiencedby the resolvers isminimized.As

network conditions (e.g., routing policy or load) change, the subset

of sites that host each anycast prefixmust be recomputed tomaintain

optimal anycast performance. Since the number ofways to configure

an anycast cloud is exponentially large, it is infeasible to predict the

catchments of sites accurately, and, consequently, impractical to

estimate the query latency achieved in each configuration. The state-

of-the-art for configuring large anycast networks such as Akamai

DNS is based on Monte Carlo simulations [36]. Our work is focused

on improving the state-of-the-art in configuring anycast networks.

AnyOpt assists the problem of optimally configuring an anycast

cloudusing aprincipledmeasure-model-and-optimize approach that

is directly applicable to real-world systems such as Akamai DNS.

An anycast-based CDN faces a similar configuration challenge.

For a CDN service provider, the latency between a client and an edge

server can have a multiplicative effect on page-load times, given the

many round-trips typically required to download various resources.

Therefore, reducing latency by even tens of milliseconds can result

in a substantial reduction of page-load times [22]. Simply adding

more anycast sites, however, does not necessarily improve the mean

latency between the clients and an anycast network [25]. Even if

some sites offer poor performance for clients, BGP may prefer these

sites to others for policy reasons. In such cases, AnyOpt can reliably

Table 1:Locations of the 15anycast sites alongwith the transit
providers and counts of peers at each location.

Site Location Transit #peers

1 Atlanta Telia 4

2 Amsterdam Telia 1

3 Los Angeles Zayo 6

4 Singapore TATA 15

5 London GTT 14

6 Tokyo NTT 3

7 Osaka NTT 4

8 Los Angeles Zayo 4

9 Miami NTT 7

10 London Sparkle 2

11 Newark NTT 7

12 Stockholm Telia 14

13 Toronto TATA 9

14 São Paulo Sparkle 9

15 Chicago GTT 5

identifywhich anycast sites improve performance, obviatingmanual

interventions.

2.3 Anycast Configuration
Although an anycast network cannot control the catchment of a site,

it can “shape” the catchment with three control knobs: (1) the sites
from which it announces an anycast prefix, (2) the ASes to which
it announces the prefix at a particular site, and (3) the BGP path

attributes it uses when announcing the prefix. Specifically, if we use

𝑆 to denote the set of sites an anycast network has (or considers to

open), the network can choose to announce an anycast prefix from

any subset of 𝑆 . For each anycast site 𝑠𝑖 , let’s denote the set of ASes it

connects toas𝑃𝑠𝑖 .Theserviceprovidercanchooseanysubsetof𝑃𝑠𝑖 to

announce the prefix. For each BGP announcement, the network can

vary the parameters associated with the announcement, including

the Multiple Exit Discriminator (MED) and the AS path length.

There are, hence, more than 2

∑ |𝑃𝑠𝑖 | possible ways to configure
an anycast network. As a first step, in this work, we explore how an

anycast network can optimize its performance by finding (a) from

which subset of sites to announce the anycast prefix and (b) to which

ASes at each site to announce the anycast prefix. We assume that

an anycast network sets the path attributes to default values when

it announces an anycast prefix. We call a site or an AS as “enabled,”

when it is chosen to announce an anycast prefix. We refer to the

combination of the chosen subset of sites and the chosen ASes at

each site as an anycast configuration.

3 Overview
In this section, we describe the anycast testbed used in this work, the

experiments for discovering a client network’s pairwise preferences,

and the high-level idea of using the preference orders to predict and

optimize the performance of an anycast network.

3.1 Anycast Testbed
Our testbed consists of an instance of GoBGP (version 2.14.0) [30],

an open-source BGP implementation, running on anUbuntu (18.04.3

LTS) server with 4 cores and 16GB of RAM. The GoBGP instance

uses generic routing encapsulation (GRE) tunnels [14] to peer with

a large CDN’s routers at different locations as described in Table 1.

449

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Zhang, et al.

Anycast Site C

Orchestrator

Anycast Site B

AS3

AS5

Ping Targets & Catchments

Figure 2: This figure illustrates the testbed we use for RTT
and catchmentmeasurements.

The routers at different locations serve as anycast sites. Each anycast

site has a tier-1 transit provider to ensure global reachability, i.e.,

any client or end-user in the Internet can reach the anycast site.

In addition to the transit provider, each site peers with a few other

ASes (Table 1), including some under a settlement-free policy, i.e.,

where neither network pays the other for transit. We launch all

active experiments and collect our measurements from the Ubuntu

server, which we henceforth refer to as the orchestrator.
We deploy an anycast configuration as follows. First, we establish

BGP sessions between the orchestrator and the routers at chosen

anycast sites. Then,we programGoBGP [30] to announce an anycast

prefix assigned to us via the BGP sessions between the orchestrator

and the site routers. The router at an anycast site likely peers with

multiple other neighbors.Weuse, hence, BGP’s community attribute

to control to which next-hop neighbors the router should advertise

our anycast prefix. We can choose, therefore, to advertise to a site’s

transit provider or any chosen peer by appropriately setting the

community attribute.

We develop a measurement tool that is similar to Verfploeter [13].

We run this tool at the orchestrator to measure the catchments. We

also improve the tool to measure the RTT between any client and

any anycast site as we soon describe.

Measuring catchments. For a given anycast configuration, we

measure each site’s catchment. We use these measurements in two

ways. First, we use them to determine a client network’s prefer-

ence between two anycast sites, henceforth referred to as pairwise
preference. Second, we compare the predicted catchments with the

empirically observed catchments. To gather the measurements, we

send ICMP requests [32] from the orchestrator to a large number of

ping targets, which are routers in different client networks chosen

by the CDNhosting our experiments to evaluate its network’s global

performance. We set the source address of each ICMP request to an

IP anycast address that we advertise and its destination address to

a target’s IP address. When a target responds to this request, i.e., to

the anycast address, it will be routed to an enabled anycast site. The

router at the site will then forward that reply to the orchestrator,

via a preconfigured GRE tunnel. The GRE tunnel carrying the reply,

thus, identifies the target’s catchment site.

MeasuringRTTs. Wecanmeasure theRTT fromtheorchestrator

toany target, but, forpredictingandoptimizinganycastperformance,

we must measure the RTT between the anycast site and the target.

Rather than indirectly estimating the RTT between a site and a tar-

get from the physical distance between the two or approximating

the RTT through appropriate proxies as in King [19], we use the

following approach. First, we announce an anycast prefix from only

one anycast site and send ICMP requests via the GRE tunnel con-

nected to that site. We include a timestamp in the request for RTT

measurements. Second, when the orchestrator receives a reply from

a target, we subtract the echoed timestamp from the current time

to calculate the RTT between the orchestrator and the target. Third,

we periodically measure the “tunnel” RTT between the orchestrator

and each anycast site. Finally, we subtract from the measured RTT

between theorchestrator anda target, the corresponding tunnelRTT,

i.e., the RTT between the orchestrator and the site through which

the orchestrator received the target’s ICMP responses. For each RTT

measurement, we repeat the ICMP requests seven times and use the

median value (to filter outliers) as the RTT between the concerned

site and the target. If the link experience high packet loss rates, we

can still sample a median RTT from at least three valid responses.

As an example, in Figure 2, suppose we only announce our prefix

to AS3. Even though we send out the ICMP requests to the targets

from both anycast site B and anycast site C, the ICMP replies will

only return to anycast site B. Therefore, we can measure the RTT

between any target and the orchestrator. By subtracting the tunnel

RTT from the orchestrator to site B, we obtain the RTT between a

target and site B.

3.2 Choosing Ping Targets
To understand the impact of anycast configurations on client net-

works’ performances, we conduct active measurements (with ICMP

probes). The targets of these ICMPmeasurements are routers in or

near the targeted client networks.

To select our targets for measurements, we follow an approach

used by the CDNhosting our testbed [23]. Specifically, wemerge the

network paths from the end-users to a CDN’s edge server into a tree,

rooted at the edge server. We then pick a common ancestor that is

closest to the end-users. In our active measurements, we ping such

targets from diverse networks to obtain a reasonable approximation

of the global performance of end-users. Additionally, the targets also

help us avoid sending ping probes to real end-users. Our target set

contains15,300 IP addresses from12,143 /24networkprefixesor5317

ASes. Each target is representative of one or more client networks.

3.3 Pairwise Preference Discovery
We conduct pairwise BGP experiments to elicit a client network’s

preference orders. For each experiment,we choose two sites 𝑠𝑖 and 𝑠 𝑗
from the available anycast sites for comparison. We announce an IP

anycast prefix from these two sites to only their corresponding tran-

sit providers, for reasons we soon describe in §4.1. If a ping target’s

response reaches site 𝑠𝑖 instead of site 𝑠 𝑗 , we record that the client

network prefers 𝑠𝑖 to 𝑠 𝑗 . By pinging all targets in one experiment,

we obtain all client networks’ preferences between 𝑠𝑖 and 𝑠 𝑗 .

3.4 Prediction and Optimization
With the RTTmeasurements and pairwise preference experiment

results, we can predict an anycast configuration’s performance and

choose an optimal configuration. If a client network’s set of pairwise

preferences has no cycles, we can construct a total preference order

for the network. For any subset of anycast sites enabled, we predict

the client network’s catchment site as its most preferred site within

that subset. A client network’s pairwise preferences may, however,

450

AnyOpt: Predicting and Optimizing IP Anycast Performance SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

not form a total order, andwe discusswhy this situationmay happen

in §4.

Given the RTTs and preference predictions, we can map an any-

cast optimizationproblem to the Simple Plant LocationProblemwith

clients’ Preference Orderings (SPLPO) [20] for optimization. SPLPO

is an extension to the well-known (uncapacitated) plant location

problem [10]. It considers the problem of how to open facilities that

have the overall lowest cost when each client has a preference order

among the set of possible facility locations. If we consider a “facility

location” as an anycast site, and use the𝑅𝑇𝑇 as the cost, then anycast

performanceoptimizationproblembecomes exactly the SPLPOprob-

lem. The SPLPO problem is NP-hard [5], andwe show inAppendix B

that even approximating the minimum cost of SPLPO is NP-hard.

A network operator can, however, solve or approximate the op-

timization problem using offline simulations. When the number of

anycast sites is small, he or she can solve it exhaustively. When the

number of sites is large, he or she may not find the (theoretically)

optimal configuration, but he or she can find a configuration that

has the best performance among all configurations she simulates.

If an anycast network has a total of |𝑆 | sites, each having one

transit provider as in our testbed, then to optimize or predict an

anycast network’s performance, a network operator needs to run

𝑂 (|𝑆 |2) pairwise experiments to obtain each client network’s total

preference order and𝑂 (|𝑆 |) experiments to obtain a client network’s

RTT to each site. In contrast, if we do not employ the prediction

or optimization technique, the operator needs to deploy 𝑂 (2 |𝑆 |)
anycast configurations to measure and compare the performance of

each configuration. We formally describe the optimization model in

Appendix B and show that the model can optimize for latency while

meeting the load constraints of a site.

3.5 Practical Challenges
We have outlined the high-level idea behind AnyOpt’s design. How-

ever, to make it useful, we must address the following challenges.

No total order. Whenwe perform the pairwise preference discov-

ery experiments, a client network may not exhibit consistent pair-

wisepreferences that forma total order.Without a total order,we can-

not predict a site’s catchment for an arbitrary anycast configuration.

To address this challenge, we formally analyze the sufficient rout-

ing conditions under which a client network has a total order over

a set of anycast sites and the total order predicts a site’s catchment

(§4.1). Wemodify the pairwise experiments described in this section

to induce and discover a client network’s total order.

Too many experiments. A naïve approach for pairwise prefer-

ence discovery requires at least𝑂 (|𝑆 |2) BGP experiments. As it takes

on the order of minutes for BGP to converge and routers implement

route damping for frequently changing prefixes, conducting such ex-

periments at scalemay become impractical. Solving the optimization

problem using an exhaustive search also becomes infeasible.

We reduce the number of experiments by separating AS-level

catchment prediction from intra-AS catchment prediction (§ 4.3).

This technique reduces the number of pairwise BGP experiments

from𝑂 (|𝑆 |2) to𝑂 (|𝐼 |2)+𝑂 (𝑎𝑣𝑔𝑆𝑖𝑡𝑒2×|𝐼 |), where 𝐼 is the set of tran-
sit ISPs an anycast network connects to and 𝑎𝑣𝑔𝑆𝑖𝑡𝑒 is the average

number of sites connecting to a transit provider. For a large anycast

network, this number of experiments may still be infeasible. We,

Figure 3: This example explains why a client network (dst)
may not exhibit a total preference order among anycast sites
A, B, and C. Arrows point from providers to customers. AS 1
prefers the path originated at site C, as it is a customer router,
while AS 4 prefers the path fromA, as it has a shorter AS path.

hence, describe a heuristicmethod to approximate a client network’s

intra-AS site preferences. This heuristic can eliminate the need for

intra-AS pairwise preference discovery experiments.

4 Design
Below, we discuss how we address the practical challenges that

AnyOpt faces.

4.1 Sufficient Conditions for Total Orders
First, we investigate why client networks exhibit a total preference

order and why this order can be used to predict anycast catchments.

With this understanding, we can determine whether our experimen-

tal approach is generally applicable to other networks.

BGP routingmodel. We analyze anycast routing using the Gao-

Rexford BGP routing model [16]. For simplicity, we consider two

kinds of contractual relationships: provider-customer and peer-to-

peer. In the former, a provider AS advertises a route received from

a customer AS to all its other neighbors, while in the latter, a peer

only advertises another peer’s routes to its customers.

When a BGP router receives different route advertisements to

the same prefix from its neighbors, it chooses the “best” path for

reaching the prefix and advertises only the best path to its neighbors

based on its export policies. The algorithm for determining the best

path works as follows [33]. When a router compares two paths, it

lexicographically compares two tuples, each consisting of an ordered

list of attributes of the corresponding paths. The first element in the

tuple of path attributes is local preference (LOC_PREF). An AS would
generally prefer an economically profitable route. Therefore, under

commonBGP policies, anASwould prefer a customer route to a peer

route and prefer a peer route to a provider route. When the routes

have the same LOC_PREF, BGP breaks ties using the following path
attributes, in the given order: AS path length, origin of prefix, MED,
type of BGP session, interior cost, router Id, and neighbor address.

Why a total ordermight not exist? As a BGP path passes along

from one AS to another, each AS may rank the paths differently. An

AS may prefer a path with a longer AS path length, while a down-

stream AS may prefer one with a shorter AS path length (all due

to differences in LOC_PREF values at the two ASes). Suppose that

451

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Zhang, et al.

𝐴, 𝐵, and𝐶 are three anycast sites, and 𝑑𝑠𝑡 is a client network that

receives anycast announcements (Figure 3). Each circle represents

an AS and an arrowed line points from a provider AS to a customer

AS. To elicit the preferences between the sites 𝐴 and 𝐵, we use 𝐴

and 𝐵 to announce our anycast prefix. The client network 𝑑𝑠𝑡 will

choose the path originated from site𝐴, as both paths from𝐴 and 𝐵

are provider routes, and the path from𝐴 has a shorter AS path. Sowe

observe𝐴>𝑑𝑠𝑡 𝐵, where the operator>𝑑𝑠𝑡 denotes “preferred by dst.”

Whenwe compare the preferences between𝐴 and𝐶 ,𝑑𝑠𝑡 will choose

𝐶 (i.e.,𝐶 >𝑑𝑠𝑡 𝐴), since AS 1 prefers a customer route to a provider

route and will advertise only the path from𝐶 to AS 4. Finally, when

we compare 𝐵 and𝐶 , 𝑑𝑠𝑡 will choose 𝐵 (i.e., 𝐵 >𝑑𝑠𝑡 𝐶), as it has the

same LOC_PREF as the path from𝐶 but with a shorter AS path. This

scenario leads to cyclic pairwise preferences—no total order.

Whydowe observe total orders in practice? If a client network

might not exhibit a total preference order under the common BGP

model, why do our experiments observe so many instances of a

consistent total order? To answer this question, we focus on the case

where anycast sites peer only with tier-1 networks and make two

assumptions: (a) any network that has settlement-free peering with

a tier-1 network has settlement-free peeringwith all tier-1 networks;

and (b) valley-free routing [16] holds. Then, if a network receives one

ormore announcements for ananycast prefix, thenall of themshould

come from either peers (if the receiving network is a tier-1 network)

or fromproviders (if the receivingnetwork is not a tier-1 network). In

selecting apath, anon-tier-1networkwill, hence, only choose among

paths advertised by providers. The available paths will, therefore,

have the same LOC_PREF under the commonBGP policy for any non-

tier-1 network receiving the anycast prefix announcement, and the

AS path length will be the most significant route selection criterion.

Furthermore, except forAS_PATH, the restofBGProuteattributes

are all basedonAS-local or router-local identifiers.Wecanview them

collectively as one combined neighbor_ID. These local identifiers
are numerical and therefore have a total order. Under these condi-

tions, we prove in Appendix A that the following theorem holds.

Theorem 4.1. If in a network a BGP speaker selects its best paths
by comparing (𝐴𝑆_𝑃𝐴𝑇𝐻, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝐼𝐷), then the paths from a client
network to all available anycast sites form a total order. Pairwise pref-
erence comparison experiments are able to discover this total order, and
this total order is predictive of a client network’s catchment site when
any subset of anycast sites are enabled.

This sufficient condition suggests that if an anycast network an-

nounces an anycast prefix from only tier-1 transit providers, then

under the common BGP routing policy, a client network will exhibit

a total preference order among the anycast network’s sites.

4.2 Practical BGP Implementation Issues
Below, we discuss two major challenges stemming from BGP imple-

mentations and howwe address them.

Arrival orders of BGP advertisements. In our experiments, we

observe that when we compare the same two sites, client networks

may sometimes prefer different sites. This behavior is inconsistent

with the BGP specification and introduces cyclic preferences in our

experiments. Upon investigating this issue, we found that real-world

BGP implementations use another attribute—the arrival time of a

route advertisement—as a tie-breaker after the “interior cost” at-

tribute. Both Cisco [1] and Juniper [2] describe this tie-breaking

algorithm in their online documents, albeit the attribute is not part

of the BGP specification [33]. Our empirical result shows that, after

resolving the arrival order problem, the ratio of clients that have a

consistent total order increases significantly. This result suggests

that tie-breaking based on the arrival-order is a widespread imple-

mentation, and it is frequently triggered in a router’s route selection

process. This is in contrast to findings from Anwar et al. [4], where

arrival order affected only 1.6-2.5% of measured paths.

To cope with this implementation issue, we take the arrival or-

ders of route advertisements into account in our experiment design.

In our pairwise experiments, we explicitly discover the client net-

works that are affected by the arrival orders of a route advertisement

and incorporate the arrival orders in anycast catchment prediction.

Specifically, we space the route advertisements from two different

sites by an interval𝑇 such that the first advertisement arrives earlier

than the second at a client network globally. Wemeasure each client

network’s catchment twice, with the route-advertisement order in

the second experiment being the reverse of that in the first. If a net-

work’s preference stays the same across the two experiments, we

conclude that thenetworkhasa strict preferenceorderbetween these

two sites; otherwise, we conclude that it has equivalent preferences.

Later, when predicting the catchments for an anycast configura-

tion, we consider how the order of announcements would affect a

site’s catchment and use the corresponding pairwise comparison

results to predict the catchments. For instance, if we choose a con-

figuration of three sites A, B, and C, and we announce an anycast

prefix in the order of first A, then B, and last C, we will use a client

network’s preference orders obtained from the measurements when

A is announced before B, and B is announced before C for predicting

the catchments.

Our experiments reveal that the order of BGP announcements

primarily affects a network’s preference at the AS-level. It does not

have any effect on a network’s preference orders when the prefix

announcements are from different sites within the same AS.

Multi-path routing. Some routers may split traffic to the same

destination prefix among multiple paths. A network’s traffic may, as

a consequence, reach different anycast sites, leading to inconsistent

total orders. This practice of multi-path routing complicates the

catchment prediction and could explain why the inconsistent total

orders exhibited by some networks.

Most networks exhibit, however, consistent total orders after we

take into account the arrival orders of route advertisements. We

ignore the networks that continue to exhibit inconsistent total or-

ders (i.e., even after taking route-announcement orders into account)

from catchment prediction and optimization, but still include them

when identifying catchments and measuring client RTTs under a

given configuration.

4.3 Two-level Preference Discovery
A real-world anycast network, such asAkamai DNS [36], may have a

few hundred sites. It is impractical to run pairwisemeasurements for

a network of this size. To reduce the number of preference measure-

ments, we exploit the two-level structure—inter-AS and intra-AS—of

routing in the Internet.

452

AnyOpt: Predicting and Optimizing IP Anycast Performance SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

When one or more sites that connect to the same AS advertise

an anycast prefix, the site-level differences disappear (i.e., cannot

be observed) once a neighboring AS re-advertises the prefix to its

neighbors. Suppose that a client network is not directly connected

to an anycast site. Then, if we discover the client network’s total

preference order among the ASes that interconnect it to the anycast

network, we can predict which ingress AS the network will use.

Within that AS, the interior routing metrics determine which site

the networkwill use. This routing structure allows us to separate the

discovery of a client network’s preference order at the AS-level from

that at the site-level. More concretely, our two-level approach first

predicts the AS-level (or provider-level) preferences of a client net-

work, and then proceeds to discover the client network’s site-level

preferences, across available sites within an AS.

Provider-level preference discovery. To elicit a client network’s

pairwisepreferences at theAS (orprovider) level,wechoose two tran-

sit providers and use one representative site from each provider for

announcing the anycast prefix, as described in §3; we repeat the exer-

cise across all pairs of transit providers. Recall that 𝐼 denotes the set of

transit providers of an anycast network.Weneed𝑂 (|𝐼 |2) pairwise ex-
periments to discover a client network’s total order. The experiments

in our testbed show that when we vary the representative site or the

number of representative sites for each transit provider, 94.2% of the

client networks on average do not change their pairwise preferences.

Site-level preference discovery. To discover a client network’s

site-levelpreferencesamonganycast siteswithineachtransitprovider,

we proceed as follows. We choose two sites for each transit provider,

announce the anycast prefix and measure the client network’s pref-

erence order; as before, we repeat this experiment with other site

pairs. We found that the announcement order has no impact on the

client network’s site-level preferences.

Site-level preference discovery might still be prohibitively costly

for a large anycast network. We could, however, use the following

heuristic to eliminate this step. Once a client network’s traffic enters

an AS that hosts multiple anycast sites, that AS’s interior routing

protocol determines the network’s catchment site, typically based

on shortest path routing metrics. We can, therefore, approximate a

client network’s site-level preference order in a given AS using the

shortest path distances from the client network’s ingress point to the

anycast sites inside the AS. Per our experiments in some tier-1 net-

works, the shortest-path distance is closely correlated with a client

network’s RTT to an anycast site. We use, therefore, the RTT from a

client network to an anycast site to predict the site-level preference:

the shorter the RTT, the more preferable the site.

Once both the provider-level and site-level preference-discovery

steps are completed, a network operator can determine a network’s

preferenceorder among its transit providers aswell as across the sites

within each transit provider. Armed with the preference orders and

the RTTmeasurements, they can predict the catchments of a given

anycast configuration for a specific announcement order, thereby

predicting the latency and load distribution. They can furthermore

simulate the performance of various anycast configurations and

deploy the ones that best fit their performance requirements.

4.4 Incorporating Peers

With the steps above, AnyOpt can generate an optimal transit-only

anycast configuration. However, an anycast network may include

peering connections. As peering connections can be settlement-free

and deliver traffic to client networks via shorter AS paths, incorpo-

rating them in an anycast configuration may improve performance

and reduce transit cost. However, it is not straightforward how to in-

corporate peers in an anycast configuration, as previouswork [8, 18]

suggests that peer connections can worsen the performance of a

transit-only anycast configuration.

While it is our future work to study how to incorporate peering

connections in an anycast configuration in more depth, we develop

a heuristic technique to conservatively include only the beneficial

peers in an anycast configuration. We refer to this heuristic as the

“one-pass” method. Again, it is based on measurements and offline

optimization.

In the one-passmethod, we first measurewhether enabling a peer

will reduce the average latency of the baseline configuration where

only transit providers are enabled. If so, we consider the peer as a

beneficial peer. From theoptimal transit-only configuration foundby

AnyOpt, we enable one peer at a time, measure the peer’s catchment

after the peer is enabled, and measure how the average latency has

changed. If the average latency is reduced, we mark this peer as a

beneficial peer. We then disable this peer, measure another peer, and

so on until we measure all peering connections of an anycast net-

work. If an anycast network has a total of𝑀 peers, this step requires

𝑀 BGPmeasurements.

After we identify the beneficial peers, we use a greedy offline

algorithm to choose the set of peers to add to the transit-only config-

uration. We rank the beneficial peers by the size of their catchments

measured during the one-pass experiments. We start with including

the beneficial peer with the largest catchment, and then examine

the beneficial peer with the second largest catchment, and so on.

For each peer we consider, we estimate whether including this peer

will reduce the average latency. If it will reduce the average latency,

we include it in the configuration. Otherwise, we skip it. We note

that the one-pass experiments we conduct only include one peer at a

time. Thus we cannot predict the catchment of a peer and hence, the

average latency, accuratelywhenmultiple peers are enabled simulta-

neously. To overcome this challenge, we conservatively assume that

whenwe add a peerwith a smaller catchment size, all client networks

in the peer’s catchment discovered in the one-pass experiments will

switch to that peer. Only if the average latency is reduced in this

case, we will include the peer. Otherwise, we will skip the peer.

Experimentally, we find that the one-pass method can further

reduce the average latency of a transit-only configuration, but not

by much. It is around 5ms for our testbed. It is our future study to

investigate why the reduction is this small. One plausible explana-

tion is that the beneficial peers in total only attract a small fraction

of the overall traffic in our testbed, as we show in § 5.4. This result

may not hold for other anycast networkswhere peering connections

attract larger amounts of traffic, but Schlinker et al. also observed

that peer routes and provider routes had similar performance in

terms of latency for the Facebook network [35].

453

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Zhang, et al.

4.5 Putting it Together

Finally, we summarize the steps it takes to predict an anycast net-

work’s catchments and to optimize its performance.

(1) For each site, we announce a test anycast prefix to a tran-

sit provider the site connects to. We use this experiment to

measure the RTT from a client network to this site (refer §3).

(2) We run pairwise preference measurements among all transit

providers of the anycast network. We consider the impact of

the arrival orders of BGP advertisements by announcing each

pair twicewith a reversed order in the secondmeasurement to

get enough information for simulating all possible announce-

ment orders. We choose one representative site from each

transit provider to perform these experiments.

For each transit provider, we use pairwise experiments to dis-

cover a client network’s preferences among the sites within

this transit provider. For a large anycast network with many

sites where this approach is infeasible, we approximate a

client network’s preferences by its RTTs to the sites within

the transit provider.

(3) Using the above experiments, we compute offline the total

preference order of each client network for the announce-

ment order that maximizes the number client networks with

a consistent total order. We exclude a client network in this

computation if its pairwise preferences do not exhibit a total

order. We use the total order to predict the catchment site of

a client network given a site-level anycast configuration. We

can enumerate through as many configurations as required

offline and choose the best ones to deploy. After the deploy-

ment, we can include the beneficial peering links discovered

using the one-pass method described in §4.4.

Analysis. We now estimate the number of BGP measurements

needed as well as the time it takes to finish them for optimizing the

Akamai DNS anycast network [36]with a transit-only configuration.

Akamai DNS has a few hundred sites. We use 500 sites and 20 transit

providers to approximate theAkamaiDNSnetwork. For anetworkof

this size, site-level pair-wise experiments are infeasible. We instead

use a client network’s RTTs to the anycast sites to approximate their

intra-AS site-level preferences. In total, we require 500 singleton

experiments for measuring a client network’s RTT to each site and

380 pair-wisemeasurements for discovering the network’s pair-wise

preferences between any two transit providers. We can, however,

run the BGP measurements in parallel with different anycast pre-

fixes. Suppose that we use four test anycast prefixes (the number of

prefixes we use in our testbed), and we separate each BGP experi-

ment by two hours. Then the 500 singleton measurements will take

500∗2/4= 250 hours or about 10 days to finish. The 380 pair-wise
experiments will take 380∗2/4=190 hours or around eight days to
finish. So for an anycast network of size as large as the Akamai DNS

system, a network operator can perform these measurements once

a month and use the results to adjust their network configurations.

If the topological features of the Internet such as a client network’s

average RTT to a site remains stable over the course of amonth, then

AnyOpt is suitable for such large networks.

5 Performance Evaluation
In this section, we use real-world experiments on the anycast testbed

described in §3.1 to evaluate AnyOpt. In particular, we answer the

following questions:

(1) How does the order in which we announce an anycast prefix

from different sites affects the catchment of each site?

(2) How effective are the pairwise preference elicitation exper-

iments in discovering the total ordering of AS-level and site-

level preferencesof clientnetworks inaprovider-onlyanycast

configuration?

(3) How accurately can we predict the catchments in a provider-

only anycast configuration?

(4) Can AnyOpt’s catchment prediction help in optimizing any-

cast deployment for performance (e.g., in terms of latency

reduction)?

5.1 Pairwise Preference Discovery
In this section, we answer the first two questions regarding the

impact of BGP announcement order and our ability to observe a

total preference order.We beginwith experiments to assess inter-AS

preferences and then repeat the same for intra-AS preferences.

Inter-AS experiments& impact of announcement order. Any-

Opt uses pairwise experiments to discover a client network’s pref-

erence order between two anycast sites. If a network has a total

ordering among all sites, AnyOpt uses it to predict its catchment

for a given anycast configuration. We take the two-level approach

described in §4.3 to discover a network’s preference orders for any-

cast sites on our testbed. For the AS-level preference discovery, we

pick two transit providers and run two pairwise comparison exper-

iments. In each experiment, we announce an anycast prefix to a

representative site from each provider AS respectively. After BGP

stabilizes, we measure each site’s catchment and the RTT from a

target network to each catchment site as described in §3.We separate

the two announcements by six minutes in each experiment, and in

the second experiment, we reverse the order of the announcements

in the first experiment. Aswe describe in §4.2, BGP implementations

break ties using the arrival order of route advertisements. Therefore,

a network’s preference may differ across the two experiments.

Naturally, we first investigate how catchments change when we

switch theprefixannouncementorder between two transit providers.

Figure 4a shows that around 6% to 14% of ping targets change their

catchment sites, suggesting that the arrival order of the BGP an-

nouncements breaks the tie between two equally preferred paths.

Note that the change of a client network’s preference is not due to

transient path changes, as 1) we wait long enough for BGP to con-

verge tomeasure the catchments, and 2)we separate the first and sec-

ondexperiments by twohours andwithdraw theprefixannounced in

the first experiment before we announce it in the second experiment.

Next, we check whether a client network’s pairwise preferences

can form a total order among the set of transit providers. As a com-

parison, we also run pairwise experiments without considering the

order of BGP announcements. That is, we announce an anycast

prefix simultaneously from a representative site in each of the two

providers. Our testbed has a total of six transit providers.We use it to

emulate an anycast network with three to six providers respectively.

454

AnyOpt: Predicting and Optimizing IP Anycast Performance SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

 0

 0.04

 0.08

 0.12

 0.16

 0.2

G
TT

, N
TT

G
TT

, S
pa

rk
le

G
TT

, T
AT

A
G

TT
, Z

ay
o

N
TT

, S
pa

rk
le

TA
TA

, N
TT

TA
TA

, S
pa

rk
le

Te
lia

, G
TT

Te
lia

, N
TT

Te
lia

, S
pa

rk
le

Te
lia

, T
AT

A
Te

lia
, Z

ay
o

Za
yo

, N
TT

Za
yo

, S
pa

rk
le

Za
yo

, T
AT

A

Fr
ac

tio
n

of
 p

in
g

ta
rg

et
s

 th
at

 s
w

itc
he

d
pr

ef
er

nc
es

Provider pairs

(a)

 0

 0.1

 0.2

 0.3

 3 4 5 6

Fr
ac

tio
n

of
 p

in
g

ta
rg

et
s

 w
/o

 a
 to

ta
l o

rd
er

Number of providers

Ordered
Simultaneous

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 7 8 9 10 11 12 13 14 15

Fr
ac

tio
n

of
 p

in
g

ta
rg

et
s

 w
/

a
to

ta
l o

rd
er

Number of anycast sites

Ordered
Simultaneous

(c)

Figure 4: (a) A significant fraction of ping targets switch their preferences based on the order in which they receive the anycast
prefix announcements. (b) Announcing an anycast prefix simultaneously (in red) from two transit provider ASes leads to more
clients without a total preference ordering compared to separating the announcements from the two ASes by six minutes (in blue).
(c) Fraction of ping targets with a total ordering remains steady at 85% as the number of sites increases and the announcement
order is controlled, but falls drastically otherwise.

For each emulation, we choose a random𝑋 ∈ [3,6] number of tran-

sit providers and run pairwise preference discovery experiments

among those providers.

Figure 4b shows that as the number of providers increases the

fraction of networks that do not have a total order increases. The

error bars in Figure 4b show the variance among different measure-

ments. Incorporating the order of BGP announcements reduces the

fraction of networks without a total ordering by half. When there

are six transit providers, if we do not consider the announcement

order, 21.7% of networks do not have a total preference order among

the providers. In contrast, if we consider the announcement order,

this number decreases to 10.8%.

Intra-AS experiments. After AS-level preference discovery, we

determine each network’s preference orders among the anycast sites

within the same transit provider AS. To do so, we choose a transit

provider and announce an anycast prefix from any two sites within

the transit provider. The site-level catchment is determined by an

AS’s interior routingmechanism. Therefore, the BGP announcement

order should not affect site-level catchment. For a transit provider

with 𝑁 sites, we run 𝑁 ∗ (𝑁 −1)/2 pairwise site-level experiments

for discovering a network’s preference order. For our testbed, each

provider has two to four sites. So it takes one to six pairwise exper-

iments to discover a network’s preferences per provider.

After the two-level preference measurements, we calculate a net-

work’s total preference order among all sites by first ranking the

transit providers based on the network’s preference for a specific

announcement order and then ranking the siteswithin each provider.

We then calculate the fraction of networks that have a total order.

Similarly, as a comparison,we also run pairwise site-level preference

discovery experiments without considering the BGP announcement

order. To do so, we pick two random sites and announce an anycast

prefix from these two sites simultaneously. We measure a network’s

pairwise preferences and compute its total preference order. We

vary the number of sites in the experiments to emulate an anycast

network of varying sizes.

We start with an anycast network with one site in each transit

provider connected to our testbed. When we add more sites, the

fraction of networks that have a total preference order sharply de-

creases (as shown in Figure 4c) if we do not consider the impact of

BGP announcement orders on route selection. When the number of

sites reaches 15, only 15.5% of networks have a total preference order.

In contrast, when we consider BGP announcement orders and use

the two-level pairwise preference discovery mechanism, 88.9% of

networks still exhibit a total preference order,which enablesAnyOpt

to accurately predict the catchments of an anycast configuration.

5.2 Catchment Prediction

Next, we evaluate whether AnyOpt can accurately predict catch-

ments and the overall latency of an anycast configuration, which

answers question (3). We first choose a random subset 𝑅 from all

sites in our anycast testbed. We then use each client network’s total

preference order (among this subset) under a BGP announcement

order for predicting the client network’s most preferred site among

𝑅 and its RTT to its catchment site. We do not predict catchments

for client networks that do not exhibit a total order. We then deploy

the configuration 𝑅 under the same BGP announcement order and

measure the resulting catchment of each site in 𝑅 and each target’s

RTT to its catchment site.We compare the predicted catchments and

RTTs with the measured ones to gauge the accuracy of AnyOpt’s

predictions. We then vary the subset 𝑅 and repeat the above steps.

Figure 5 summarizes the results. In Figure 5a, we show the results

from three experiments. In the first two experiments, we choose

four and six transit providers in our anycast testbed and enable a

representative site in each provider. In the third experiment, we

enable all 15 sites. We measure the fraction of client networks for

which we correctly/incorrectly predict their catchment sites and the

fraction of networks that do not have a total order. The figure shows

that when the number of sites increases, the number of networks

that have a total preference order decreases. However, within those

networks that have a total order, we can correctly predict the catch-

ment sites more than 93% of the time. There are several reasons that

might lead to no total orders, such as multipath routing, uncommon

BGP policies, and routing configurations that violate the sufficient

conditions for a total order (§4.1).

We plot the CDF of the absolute values of the differences between

the predicted average RTT (of all targets) of an anycast configuration

and the measured average RTT of the same anycast configuration

455

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Zhang, et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

4 6 15

Fr
ac

tio
n

of
 p

in
g

ta
rg

et
s

Number of sites

Correct Incorrect No Total Order

(a) Catchment prediction accuracy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

CD
F

Absolute Estimation Error for Avg RTT (ms)

(b) Absolute RTT estimation error

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12

CD
F

Relative Estimation Error for Avg RTT

(c) Relative RTT estimation error

Figure 5: Evaluation of catchment prediction accuracy. (a) AnyOpt predicts most catchments correctly when client networks
exhibit a total ordering; (b,c) the vast majority of errors in RTT estimates are small.

in Figure 5b. We compute the CDF from 38 random anycast configu-

rations with the number of sites ranging from 1 to 14. Per this figure,

the predicted average RTT is within 6ms of the measured RTT for

more than 80% of anycast configurations.

Figure 5c shows the relative errors of the predicted average RTT

when compared with the measured average RTT for each anycast

configuration we choose. For all configurations we tested, the mean

predicted average RTT error is less than 4.6%.

Takeaways. These results are encouraging. They suggest that

once we obtain a client network’s total preference order and the

RTTs from each site to each target, we can accurately predict the

catchments and the overall RTT of an anycast configuration for our

testbed.

5.3 Performance Optimization
In this section, we answer question (4). In addition to predicting the

catchments of an anycast configuration, AnyOpt assists in finding

a configuration (i.e., the set of sites enabled to announce an anycast

prefix) that results in the lowest average RTTs between the any-

cast sites and the targets. To estimate the extent of potential RTT

reductions, we conduct the following experiments. We use offline

computations to iterate over as many anycast configurations for our

testbed as we could possibly compute within a time bound, which

we currently set to six hours. For each configuration, we choose a

prefix announcement order that yields the largest fraction of client

networks with a total preference order. The computation returns a

12-site configuration out of 15-site testbed. We deploy this AnyOpt-

optimized configuration and measure the catchments of each site

and the average client latency.We then compare the average RTT

of the AnyOpt configuration with two other types of configurations

and the default configuration of enabling all 15 sites.

N-Greedy. In these configurations, we enable 𝑁 sites using a

greedy algorithm.We enable the sites in a configuration according

to their average unicast RTTs to all client networks. Recall that we

measured those RTTs by announcing an anycast prefix from only

one site. We choose the top 𝑁 sites with the lowest average RTTs to

the measurement targets, deploy the configuration, and measure its

catchments and RTTs. The 12-Greedy configuration has the same

number of sites as in the AnyOpt-optimized configuration.

4-Random. To simplify management, network operators may

choose to use only a small number of providers and sites. For this

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

CD
F

RTT per ping target (ms)

AnyOpt
15-All

12-Greedy
4-Random
4-Greedy

Figure 6: AnyOpt-optimized configuration substantially
outperforms other approaches in terms of RTT.

scenario, we assume a network chooses two providers and two sites

in each provider. We randomly generate three such configurations,

deploy them, and measure their catchments and RTTs.

We show CDF of the resulting RTTs to each target network un-

der each scenario in Figure 6. The 4-Random line is the result from

the best random four-site configurations we generate. The median

RTT for the AnyOpt-optimized configuration (the “AnyOpt” line)

is 43ms, while that of the greedy configuration of the same number

of sites (the “12-Greedy” line) is 76ms. Put another way, AnyOpt

improves the median RTT by 43.4% for the same number of sites.

Compared with other configurations, AnyOpt improves the median

RTT by 27-59.8%. Although not shown in the figure, the AnyOpt

configuration also has a 33ms lower average RTT compared to the

greedy configuration with the same number of sites. It has 14−35ms

lower average RTT than the other configurations.

Consistent with observations from prior work, we find that the

configuration with all 15 sites enabled (the “15-all” line in Figure 6)

exhibits worse performance than a smaller AnyOpt configuration

with 12 sites. However, the 12-site AnyOpt configuration substan-

tially outperforms the other configurations with fewer or the same

number of sites. This result shows thatmore sites can lead to sub-
stantially better performance when using the right measurements
and optimization approach.

5.4 Incorporating Peering Links
Next, we show how incorporating peering links to the transit-only

AnyOpt configuration can impact the average client latency. The

456

AnyOpt: Predicting and Optimizing IP Anycast Performance SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

 0.6

 0.8

 1

0% 5% 10% 15% 20% 25%

CD
F

Percentage among all ping targets

(a)

-4
-3
-2
-1
 0
 1
 2
 3
 4

#1 #11 #21 #31 #41 #51 #61 #71

Δ
RT

T
(m

s)

Peering link index

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

CD
F

RTT per ping target (ms)

AnyOpt
AnyOpt+BenefitPeers

AnyOpt+AllPeers

(c)

Figure 7: Impact of non-transit peers on AnyOpt performance. (a) CDF of a peer AS’s catchment when adding a peering link to
AnyOpt’s transit-only configuration. (b) Mean RTT changes when adding a peering link to AnyOpt’s transit-only configuration.
(c) CDF of client RTTs after incorporating peering links.

AnyOpt testbed includes 104 non-transit peering links. Among them,

only 72 peering links can reach someof our ping targets,which could

be due to routing configurations, e.g., a peer may filter our testbed

traffic, or a peer’s catchment is too small to include any ping target.

To estimate a peer’s impact on the average client latency, we

enable each peer separately on the AnyOpt-optimized transit-only

configuration (as described in §4.4). We then measure the peer’s

catchment size under this configuration and how the average client

RTT has changed. If enabling the peer reduces the average RTT, we

deem it a beneficial peer. Figure 7a shows the CDF of a peer’s catch-

ment size distribution, and Figure 7b shows how enabling a peer

changes the RTT averaged over all ping targets. We rank the peers

by the value of average RTT changes they introduce. As can be seen,

more than 80% of the peer links on our testbed have a catchment size

consisting of fewer than 2.5% ping targets. Only a few peers have

noticeable impact on the average RTTs.

We then use the one-pass heuristic to enable the beneficial peers

that are likely to reduce the average RTT of the AnyOpt-optimized

configuration.Werefer to thisconfigurationasAnyOpt+BenefitPeers.

We measure the RTT distribution of each ping target under this con-

figuration, andcompare itwith theconfigurationofenablingall peers

(AnyOpt+AllPeers) and AnyOpt. Per Figure 7c, AnyOpt+AllPeers

and AnyOpt+BenefitPeers have similar performance. Both perform

slightly better than AnyOpt, but not significantly. Specifically, Any-

Opt+BenefitPeers reduces AnyOpt’s average RTT from 68ms to

63ms, while AnyOpt+AllPeers reduces it to 61ms. We note that in

our testbed, enabling all peers leads to a configurationwith a slightly

lower mean RTT than the configuration identified by the one-pass

heuristic. This result may not be generally applicable to other any-

cast networks, and a conservative approach such as the one-pass

heuristic, which includes beneficial peers one-by-one, will be useful

in situations where enabling all peers worsens the performance of

a transit-only configuration.

6 Limitations and FutureWork
This work has a few key limitations and leaves open a number of

interesting directions for future work. We discuss them below.

Testbed We obtain all experimental results on the anycast testbed

we use. Although from our theoretical analysis, we expect that other

networks would obtain similar results, this hypothesis is yet to be

validated by real-world experiments on other anycast networks.

Large anycast networks. Although we outlined a heuristic ap-

proach in §4.3 that uses a client network’s RTTs to anycast sites

of a large anycast network to discover the network’s intra-AS site

preferences,we have not yet to test the effectiveness of this approach

on other anycast networks.

Settlement-free peers. We have performed experiments to fine-

tune a baseline anycast configuration consisting of only advertise-

ments to tier-1 transit providers. We also used a one-pass method

to evaluate the peering links we had in our infrastructure. Our eval-

uation showed that the RTT reduction brought by these peerings is

small. While interesting, our findings might be impacted by limited

connectivity in our testbed (15 sites and 104 peering links). An open

question is howmuch performance might change if we advertised

to settlement-free peers for other larger anycast networks.

Stability analysis. Deploying AnyOpt as a production system

would require a longitudinal study to determine how often client

total orders change, and by howmuch. This information would then

govern the frequency of the pairwise experiments that would be nec-

essary to keep the total orders up to date. We have only conducted a

few experiments in January 2021 to gauge whether the performance

of an anycast configuration remains stable. That is, if we deploy the

optimal configuration given by AnyOpt, will it remain optimal?We

deployed a configuration and measured it weekly in the first three

weeks of January 2021. The results are promising, more than 90% of

the catchments remain unchanged and the average RTT is also very

stable in the three-week duration. It is our future work to study the

stability of an optimal configuration in detail.

Other control knobs. A network operator can modify the BGP

attributes of an anycast prefix advertisement (e.g., prepend its own

AS numbers) to influence catchments. She can also use the BGP poi-

soning technique [21] to avoid a specific AS hop along the path. It is

in our futurework to explore how to use these “knobs” for catchment

prediction and performance optimization.

Reducing the number of experiments. When the number of

transit networks that an anycast network connects to grows larger

(e.g., 20 or more), performing a quadratic number of experiments

becomes burdensome. It is natural to ask whether the total orders

could be learned, or learned approximately, using fewer experiments.

One possible future direction to reducing the number of experiments

would be to rely on publicly available BGP routing tables to infer

457

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Zhang, et al.

as much about catchments as possible, and then to supplement the

information gleaned from these tables with active measurements.

7 RelatedWork

Measuring IP anycast performance. IP anycast has long been

used by Internet services to provide automatic load balancing and

latency reduction among service replicas. Previous work focuses

on measuring the performance of deployed IP anycast systems,

including DNS root servers [6, 11, 17, 22, 22, 24, 26, 27, 29] and

CDNs [7, 12, 22]. Most of the studies on root DNS anycast systems

show that global IP anycast often fails to route clients to the replicas

that provide the lowest latency or to evenly distribute the workload

among the replicas. As an example, Li et al. [25] showed that for the

D-root name server, only one third of its clients’ queries were routed

to their geographically closest anycast sites. Differently, Calder et

al. [7] and Koch et al. [22] show that for Microsoft CDN, only 35%

of users experience anycast latency inflation.

Explaining and improving poor performance. Sarat et al. [34]

proposed to limit the radius of an anycast prefix announcement to

prevent a client from reaching a topologically distant site. However,

as a global ISP often has a network spanning a large geographic area,

limiting the radius of a BGP announcement cannot prevent a client

from reaching a distant site. Ballani et al. [6] hypothesized that the

sub-optimal performance of IP anycast is due to BGP’s routing be-

havior. BGP is performance oblivious, and ASes configure their BGP

routers to find the “cheapest” rather than the best performing routes.

Theyproposed tohost all anycast sites throughone tier-1 provider. Li

et al. [25] proposed to embed the origin router’s geographic location

in a BGP announcement to make BGP latency aware. Alzoubi et

al. [3] proposed to use a central route controller andMPLS tunnels

to direct anycast traffic to specific anycast sites within one ISP, but it

is difficult to generalize this approach to large anycast networks that

span multiple ISPs, as across-domain MPLS engineering is not well

supported by ISPs. Fastroute [15] describes an anycast architecture

that combines DNS redirection and anycast routing to manage the

workload of a large CDN.

Different from this body of work, AnyOpt aims to predict anycast

catchment and enable a service provider to choose an optimal any-

cast configuration. It can reduce the overall client latency without

modifying BGP announcements to embed geographic information.

Although we do not explicitly address load-balancing in this work,

as we explain in §3 and Appendix B, a network operator can add a

load constraint to the optimization problem or predict how load will

change by accurately predicting anycast catchment.

Measuringandinferringanycastcatchment. Cloudflare’sVerf-

ploeter [12, 13] measures the catchment of an anycast site without

using a large number of active probes. Verfploeter sends out ICMP

requests to hosts with the source addresses of the requests set to an

anycast address. A host’s ICMP reply will reach its corresponding

catchment site. Vries [13] et al. have shown that Verfploeter can

accurately map out the catchment of an anycast site, overcoming

the limitation of previous work that uses RIPE Atlas [38] to measure

anycast catchment. Another body of work [11, 25, 40] uses RIPE

Atlas to send active probes to an anycast address, but RIPE Atlas has

a skewed geographic distribution. AnyOpt borrows Verfploeter’s

architecture to map an anycast site’s catchment, but enhances the

architecture to measure a client’s RTT to an anycast site (§3).

Sermpezis andKotronis [37] proposed to use the inferredAS-level

Internet topology for predicting anycast catchment. Their approach

cannot, however, accurately predict how ASes break ties among

equally preferred routes. In addition, any incorrect inference in the

AS topology will exacerbate the inaccuracy of its prediction. As

shown in their simulations, when the number of anycast sites in-

creases from two to four sites, the number of nodes with certain

inference decreases from 15000 to 6000 and will keep decreasing

as the number of anycast sites increases.

In contrast, AnyOpt takes a measure-model-and-optimize ap-

proach. It uses carefully designed BGP experiments to discover how

ASes choose paths and combine the experimental results with offline

computation for anycast performance prediction and optimization.

In the future, we plan to investigate whether we can combine Any-

Opt with an inference-based method to further reduce the number

of BGP experiments required for making accurate predictions.

8 Conclusion

In this paper, we introduced AnyOpt and showed how it can be used

to minimize the latency and balance the load of an anycast network.

The key idea is that, in certain circumstances, the site preferences of

each client network exhibit a total order andwe candiscover the total

orders of all client networks using pairwise preference-elicitation

experiments that announce an anycast prefix from any two available

sites. We prove the sufficient conditions under which a client net-

work exhibits a total order and use a two-level approach consisting

of inter-AS experiments followed by intra-AS experiments to reduce

the total number of experiments. With the total order in hand for

each client network, we can predict the catchment of each anycast

site for any particular subset of sites that might advertise. Then by

formalizing theproblemas an instance of the SPLPOproblem,we can

find a set of anycast sites that minimize latency while balancing load

(i.e., satisfying capacity constraints). Our evaluation using a testbed

that has 15 global sites demonstrates the feasibility of our system.

AnyOpt can predict catchment areas with small errors using only

a quadratic number of experiments, and solving the resulting opti-

mization problemyields tangible reductions in latency. To the best of

our knowledge, AnyOpt is the first work that systematically tackles

the anycast performance prediction and optimization problem.

9 ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Jennifer Rex-

ford for their helpful comments, and HaoyuWang and Shen Zhu for

helping with an early draft of this paper. We sincerely thank the net-

work engineering team at Akamai Technologies, especially Aaron

BlockandAaronAtac,whosehelpmade thisworkpossible.We thank

Kamesh Munagala for help in proving that even approximating the

minimumcost of SPLPO isNP-hard. Thisworkwas supported in part

by the National Science Foundation under awards 1910867, 1763617,

1763742, 1822965, and 1827674, and in part by subcontracts fromAka-

maiTechnologies in support ofDARPAprime contractHR0011-17-C-

0030.Additional supportwasprovidedbyMicrosoftResearchFaculty

Fellowship 8300751 and AWSMachine Learning Research awards.

458

AnyOpt: Predicting and Optimizing IP Anycast Performance SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

References

[1] 2016. BGP Best Path Selection Algorithm. Retrieved Jun 28, 2021 from

https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-

bgp/13753-25.html

[2] 2020. Understanding BGP Path Selection. Retrieved Jun 28, 2021 from

https://www.juniper.net/documentation/en_US/junos/topics/reference/

general/routing-protocols-address-representation.html

[3] Hussein A. Alzoubi, Seungjoon Lee, Michael Rabinovich, Oliver Spatscheck,

and Jacobus Van Der Merwe. 2011. A Practical Architecture for an

Anycast CDN. ACM Trans. Web 5, 4, Article 17 (Oct. 2011), 29 pages.

https://doi.org/10.1145/2019643.2019644

[4] Ruwaifa Anwar, Haseeb Niaz, David Choffnes, Ítalo Cunha, Phillipa Gill, and

Ethan Katz-Bassett. 2015. Investigating Interdomain Routing Policies in the

Wild. In Proceedings of the 2015 Internet Measurement Conference (Tokyo, Japan)
(IMC ’15). Association for Computing Machinery, New York, NY, USA, 71–77.

https://doi.org/10.1145/2815675.2815712

[5] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto

Marchetti-Spaccamela, and Marco Protasi. 2012. Complexity and approximation:
Combinatorial optimization problems and their approximability properties. Springer
Science & Business Media. https://www.springer.com/gp/book/9783540654315

[6] Hitesh Ballani, Paul Francis, and Sylvia Ratnasamy. 2006. A Measurement-

Based Deployment Proposal for IP Anycast. In Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement (Rio de Janeriro, Brazil) (IMC
’06). Association for Computing Machinery, New York, NY, USA, 231–244.

https://doi.org/10.1145/1177080.1177109

[7] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra

Padhye. 2015. Analyzing the Performance of an Anycast CDN. In Pro-
ceedings of the 2015 Internet Measurement Conference (Tokyo, Japan) (IMC
’15). Association for Computing Machinery, New York, NY, USA, 531–537.

https://doi.org/10.1145/2815675.2815717

[8] Ignacio Castro, Juan Camilo Cardona, Sergey Gorinsky, and Pierre Francois. 2014.

Remote Peering: More Peering without Internet Flattening. In Proceedings of the
10th ACM International on Conference on Emerging Networking Experiments and
Technologies (Sydney, Australia) (CoNEXT ’14). Association for Computing Ma-

chinery, New York, NY, USA, 185–198. https://doi.org/10.1145/2674005.2675013

[9] Danilo Cicalese, Jordan Augé, Diana Joumblatt, Timur Friedman, and Dario Rossi.

2015. Characterizing IPv4 Anycast Adoption and Deployment. In Proceedings
of the 11th ACM Conference on Emerging Networking Experiments and Technologies
(Heidelberg, Germany) (CoNEXT ’15). Association for ComputingMachinery, New

York, NY, USA, Article 16, 13 pages. https://doi.org/10.1145/2716281.2836101

[10] Gérard Cornuéjols, George Nemhauser, and LaurenceWolsey. 1983. The uncapic-
itated facility location problem. Technical Report. Cornell University Operations

Research and Industrial Engineering. https://hdl.handle.net/1813/8491

[11] Ricardo de Oliveira Schmidt, John Heidemann, and Jan Harm Kuipers.

2017. Anycast Latency: How Many Sites Are Enough?. In Passive
and Active Measurement, Mohamed Ali Kaafar, Steve Uhlig, and Jo-

hanna Amann (Eds.). Springer International Publishing, Cham, 188–200.

https://link.springer.com/chapter/10.1007/978-3-319-54328-4_14

[12] Wouter B. de Vries, Salmān Aljammāz, and Roland van Rijswijk-Deij. 2020.

Global-Scale Anycast Network Management with Verfploeter. In NOMS
2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. 1–9.

https://doi.org/10.1109/NOMS47738.2020.9110449

[13] Wouter B. de Vries, Ricardo de O. Schmidt, Wes Hardaker, John Heidemann,

Pieter-Tjerk de Boer, and Aiko Pras. 2017. Broad and Load-Aware Anycast Map-

ping with Verfploeter. In Proceedings of the 2017 Internet Measurement Conference
(London, United Kingdom) (IMC ’17). Association for Computing Machinery, New

York, NY, USA, 477–488. https://doi.org/10.1145/3131365.3131371

[14] Dino Farinacci, Tony Li, Stanley P. Hanks, David Meyer, and Paul S. Traina.

2000. Generic Routing Encapsulation (GRE). RFC 2784. RFC Editor. 1–9 pages.

https://www.rfc-editor.org/rfc/rfc2784.txt

[15] Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick Holt, Jie Liu, Yingying

Chen, and Oleg Surmachev. 2015. FastRoute: A Scalable Load-Aware Anycast

Routing Architecture for Modern CDNs. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15). USENIX Association,

Oakland, CA, 381–394. https://www.usenix.org/conference/nsdi15/technical-

sessions/presentation/flavel

[16] Lixin Gao and Jennifer Rexford. 2001. Stable Internet Routing without

Global Coordination. IEEE/ACM Trans. Netw. 9, 6 (Dec. 2001), 681–692.

https://doi.org/10.1109/90.974523

[17] Danilo Giordano, Danilo Cicalese, A. Finamore, M. Mellia, M. Munafo, Diana

Joumblatt, and D. Rossi. 2016. A First Characterization of Anycast Traffic from

Passive Traces. In IFIP workshop on Traffic Monitoring and Analysis (TMA). ouvain
La Neuve, Belgium, 30–38. https://hal-imt.archives-ouvertes.fr/hal-01383092

[18] Vasileios Giotsas, George Nomikos, Vasileios Kotronis, Pavlos Sermpezis,

Petros Gigis, Lefteris Manassakis, Christoph Dietzel, Stavros Konstantaras, and

Xenofontas Dimitropoulos. 2021. O Peer, Where Art Thou? Uncovering Remote

Peering Interconnections at IXPs. IEEE/ACM Transactions on Networking 29, 1
(2021), 1–16. https://doi.org/10.1109/TNET.2020.3025945

[19] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. 2002. King:

Estimating Latency between Arbitrary Internet End Hosts. In Proceedings of
the 2nd ACM SIGCOMM Workshop on Internet Measurment (Marseille, France)

(IMW ’02). Association for Computing Machinery, New York, NY, USA, 5–18.

https://doi.org/10.1145/637201.637203

[20] Pierre Hanjoul and Dominique Peeters. 1987. A facility location problem with

clients’ preference orderings. Regional Science and Urban Economics 17, 3 (1987),
451–473. https://doi.org/10.1016/0166-0462(87)90011-1

[21] Ethan Katz-Bassett, Colin Scott, David R. Choffnes, Ítalo Cunha, Vytautas

Valancius, Nick Feamster, Harsha V. Madhyastha, Thomas Anderson, and Arvind

Krishnamurthy. 2012. LIFEGUARD: Practical Repair of Persistent Route Failures.

In Proceedings of the ACM SIGCOMM2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (Helsinki, Finland)

(SIGCOMM ’12). Association for Computing Machinery, New York, NY, USA,

395–406. https://doi.org/10.1145/2342356.2342435

[22] Thomas Koch, Ke Li, Calvin Ardi, Ethan Katz-Bassett, Matt Calder, and John

Heidemann. 2021. Anycast in Context: A Tale of Two Systems. In Proceedings
of the 2021 Conference of the ACM Special Interest Group on Data Communication
(Virtual Event) (SIGCOMM ’21). Association for Computing Machinery, New York,

NY, USA, 20. https://doi.org/10.1145/3452296.3472891

[23] F Thomson Leighton, Ravi Sundaram, Matthew Levine, and Adrian Soviani. 2007.

Method for generating a network map. US Patent 7,251,688.

[24] Matthew Lentz, Dave Levin, Jason Castonguay, Neil Spring, and Bobby Bhat-

tacharjee. 2013. D-Mystifying the D-Root Address Change. In Proceedings of
the 2013 Conference on Internet Measurement Conference (Barcelona, Spain)

(IMC ’13). Association for Computing Machinery, New York, NY, USA, 57–62.

https://doi.org/10.1145/2504730.2504772

[25] Zhihao Li, Dave Levin, Neil Spring, and Bobby Bhattacharjee. 2018. Internet

Anycast: Performance, Problems, & Potential. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication (Budapest, Hungary)
(SIGCOMM ’18). Association for Computing Machinery, New York, NY, USA,

59–73. https://doi.org/10.1145/3230543.3230547

[26] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, and JianpingWu. 2013. Measuring

Query Latency of Top Level DNS Servers. In Passive and Active Measurement,
Matthew Roughan and Rocky Chang (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 145–154. https://link.springer.com/chapter/10.1007/978-3-642-

36516-4_15

[27] Ziqian Liu, Bradley Huffaker, Marina Fomenkov, Nevil Brownlee, and kc claffy.

2007. Two Days in the Life of the DNS Anycast Root Servers. In Passive and
Active Network Measurement, Steve Uhlig, Konstantina Papagiannaki, and Olivier
Bonaventure (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 125–134.

https://link.springer.com/chapter/10.1007/978-3-540-71617-4_13

[28] Chris Metz. 2002. IP anycast point-to-(any) point communication. IEEE Internet
Computing 6, 2 (2002), 94–98. https://doi.org/10.1109/4236.991450

[29] Giovane C.M. Moura, Ricardo de O. Schmidt, John Heidemann, Wouter B. de

Vries, Moritz Muller, Lan Wei, and Cristian Hesselman. 2016. Anycast vs.

DDoS: Evaluating the November 2015 Root DNS Event. In Proceedings of the
2016 Internet Measurement Conference (Santa Monica, California, USA) (IMC
’16). Association for Computing Machinery, New York, NY, USA, 255–270.

https://doi.org/10.1145/2987443.2987446

[30] NTT Labs. 2020. BGP implemented in the Go Programming Language.

https://github.com/osrg/gobgp.

[31] Craig Partridge, Trevor Mendez, and Walter Milliken. 1993. Host Anycasting
Service. RFC 1546. RFC Editor. https://www.rfc-editor.org/rfc/rfc1546.txt

[32] Jon Postel. 1981. Internet Control Message Protocol. RFC 777. RFC Editor. 1–14

pages. https://www.rfc-editor.org/rfc/rfc777.txt

[33] YakovRekhter,TonyLi, andSusanHares. 2006.ABorderGatewayProtocol 4 (BGP-4).
RFC 4271. RFC Editor. 1–103 pages. https://www.rfc-editor.org/rfc/rfc4271.txt

[34] Sandeep Sarat, Vasileios Pappas, and Andreas Terzis. 2005. On the Use of Anycast

in DNS. In Proceedings of the 2005 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems (Banff, Alberta, Canada)
(SIGMETRICS ’05). Association for Computing Machinery, New York, NY, USA,

394–395. https://doi.org/10.1145/1064212.1064271

[35] Brandon Schlinker, Italo Cunha, Yi-Ching Chiu, Srikanth Sundaresan, and

Ethan Katz-Bassett. 2019. Internet Performance from Facebook’s Edge. In

Proceedings of the Internet Measurement Conference (Amsterdam, Netherlands)

(IMC ’19). Association for Computing Machinery, New York, NY, USA, 179–194.

https://doi.org/10.1145/3355369.3355567

[36] Kyle Schomp, Onkar Bhardwaj, Eymen Kurdoglu, Mashooq Muhaimen, and

Ramesh K. Sitaraman. 2020. Akamai DNS: Providing Authoritative Answers

to the World’s Queries. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (Virtual Event, USA)

(SIGCOMM ’20). Association for Computing Machinery, New York, NY, USA,

465–478. https://doi.org/10.1145/3387514.3405881

459

https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/general/routing-protocols-address-representation.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/general/routing-protocols-address-representation.html
https://doi.org/10.1145/2019643.2019644
https://doi.org/10.1145/2815675.2815712
https://www.springer.com/gp/book/9783540654315
https://doi.org/10.1145/1177080.1177109
https://doi.org/10.1145/2815675.2815717
https://doi.org/10.1145/2674005.2675013
https://doi.org/10.1145/2716281.2836101
https://hdl.handle.net/1813/8491
https://link.springer.com/chapter/10.1007/978-3-319-54328-4_14
https://doi.org/10.1109/NOMS47738.2020.9110449
https://doi.org/10.1145/3131365.3131371
https://www.rfc-editor.org/rfc/rfc2784.txt
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/flavel
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/flavel
https://doi.org/10.1109/90.974523
https://hal-imt.archives-ouvertes.fr/hal-01383092
https://doi.org/10.1109/TNET.2020.3025945
https://doi.org/10.1145/637201.637203
https://doi.org/10.1016/0166-0462(87)90011-1
https://doi.org/10.1145/2342356.2342435
https://doi.org/10.1145/3452296.3472891
https://doi.org/10.1145/2504730.2504772
https://doi.org/10.1145/3230543.3230547
https://link.springer.com/chapter/10.1007/978-3-642-36516-4_15
https://link.springer.com/chapter/10.1007/978-3-642-36516-4_15
https://link.springer.com/chapter/10.1007/978-3-540-71617-4_13
https://doi.org/10.1109/4236.991450
https://doi.org/10.1145/2987443.2987446
https://github.com/osrg/gobgp
https://www.rfc-editor.org/rfc/rfc1546.txt
https://www.rfc-editor.org/rfc/rfc777.txt
https://www.rfc-editor.org/rfc/rfc4271.txt
https://doi.org/10.1145/1064212.1064271
https://doi.org/10.1145/3355369.3355567
https://doi.org/10.1145/3387514.3405881

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Zhang, et al.

[37] Pavlos Sermpezis and Vasileios Kotronis. 2019. Inferring Catchment in Internet

Routing. Proc. ACMMeas. Anal. Comput. Syst. 3, 2, Article 30 (June 2019), 31 pages.
https://doi.org/10.1145/3341617.3326145

[38] RIPE NCC Staff. 2015. RIPE Atlas: A global internet measurement network.

Internet Protocol Journal 18, 3 (2015).
[39] Akamai Technologies. 2020. Prolexic Routed. Retrieved Jan 28, 2021 from

https://www.akamai.com/us/en/multimedia/documents/product-brief/prolexic-

routed-product-brief.pdf

[40] Lan Wei and John Heidemann. 2017. Does anycast hang up on you?. In

2017 Network Traffic Measurement and Analysis Conference (TMA). 1–9.

https://doi.org/10.23919/TMA.2017.8002905

[41] Einav Yoav. 2019. Amazon found every 100ms of latency cost them 1% in sales.
Retrieved Jan 28, 2021 from https://www.gigaspaces.com/blog/amazon-found-

every-100ms-of-latency-cost-them-1-in-sales/

Appendix
Appendices are supportingmaterial that has not been peer-reviewed.

A Using pairwise
measurements to predict client preference

AnyOpt relies on pairwise measurements to predict which site is

chosen by a client from among the set of sites that announce a given

prefix. We now theoretically explore the following questions. Un-

der what conditions are pairwise measurements guaranteed to be

consistentwith a total ordering of the sites? That is, the outcomes

from the pairwise measurements are guaranteed to not to contain a

cycle. If a consistent total ordering exists, when is that total ordering

guaranteed to be predictive? That is, the total ordering accurately
predicts the site chosen by the client for every subset of possible sites
announcing the prefix. Finally, are there situations when pairwise

measurements are not consistent and/or not predictive?

Whether or not a set of pairwise measurements yield a predictive

total order depends on the policies executed by each router. When

a router receives multiple route announcements for a prefix in its

incoming links, it uses a selection policy to choose one of these an-
nouncements and further uses an export policy to decide the outgoing
links on which the selected announcement must be sent. We will

assume that the selection and export policies are compliant with the

BGP model of Gao-Rexford criterion[16]. Gao-Rexford states that

a router selects route announcements from a customer first, peer

next, and provider last. For its export policy, the model states that

a route learned from a customer is sent to all outgoing links, a route

learned from a peer is sent to its customers, and a route learned from

a provider is sent to its customers.

A link is said to be empty if no announcement is transmitted over

that link. The following hold.

Lemma1. Let S andS’ be two subsets of the incoming links of a router
𝑅 such that𝑆 ⊂𝑆 ′. Let E(S) (resp. E(S’)) be the event that announcements
for the prefix are received by R in exactly the links in S (resp., S’). For
any Gao-Rexford compliant policy, the following statements hold.

(1) If anoutgoing link𝑙 of𝑅 is non-empty inE(S), then𝑙 is non-empty
in E(S’). This statement says that if a router 𝑅 receives route
announcements frommore incoming links, it cannot shrink the
set of outgoing links it exports to.

(2) If an announcement received via an incoming link 𝑖 ∈𝑆 was not
sent over an outgoing link 𝑙 in E(S), the announcement received
via 𝑖 is also not sent over that link 𝑙 in E(S’). This statement says
that any additional announcement received from a neighbor

cannot increase a router 𝑅’s preference to an announcement
received from a link 𝑖 .

Proof. The first statement is true since if the link 𝑙 has an an-

nouncement sent in event 𝐸 (𝑆), the same or a more preferred an-

nouncementwill be sent in event𝐸 (𝑆 ′). The second statement is true

since if the announcement from 𝑖 ∈𝑆 is not sent in 𝐸 (𝑆), then it will
not be sent in event 𝐸 (𝑆 ′) when strictly more choices are presented

to the router. □

A.1 Local PreferenceModel
We now present a simple model called the local preference model

for inter-domain routing that obeys the Gao-Rexford criterion. The

selection policy of a router in this model uses a total preference

order of its incoming links to select the announcement in the most

preferred link for re-transmission. The total preference order must

be determined “locally” in that it is oblivious to the source or path

taken by the announcement prior to reaching the router. Note that

the Gao-Rexford criterion of choosing route announcements in the

preference order of customer, peer, and producer is consistent with

a local preferencemodel as long as ties (say, between two customers)

are broken using a source-oblivous metric (say, link id). BGP in

practice is not source-oblivous, and we extend this model in § A.2.

Lemma 2. In the local preference model, let𝐴 and 𝐵 be two anycast
sites. When𝐴 and 𝐵 are compared pairwise, let𝐴 be the “winner” and
𝐵 be the “loser”. When additional sites are turned on, 𝐵 will continue
to be a “loser”.

BA

Figure 8: In the pairwise comparison of𝐴 and 𝐵, the winning
path 𝜋 from site𝐴 (in black) is compared to paths 𝜋 ′ (in blue)
from 𝐵, but not to additional paths 𝜋 ′′ (in red) from 𝐵, which
don’t reach 𝑝𝑖.

Proof. Suppose 𝑆 = {𝐴,𝐵} are the only two sites that are turned
on. Figure 8 shows the winning path 𝜋 of𝐴 and the paths 𝜋 ′ where
the announcements from 𝐵 meet that winning path 𝜋 and lose to

𝐴. The figure also shows other “potential” paths 𝜋 ′′ where an an-

nouncement from 𝐵 could have met the winning path 𝜋 , but did not,

because 𝐵 was not propagated beyond a certain router on that path.

Now, suppose we turn on more sites, i.e., we turn on all sites in

𝑆 ′ such that 𝑆 ⊂𝑆 ′. We claim that 𝐵 cannot win in event 𝐸 (𝑆 ′) when
all sites in 𝑆 ′ are turned on. Note that all links in the winning path
𝜋 of𝐴 are non-empty in 𝐸 (𝑆), since (by definition) those links carry

460

https://doi.org/10.1145/3341617.3326145
https://www.akamai.com/us/en/multimedia/documents/product-brief/prolexic-routed-product-brief.pdf
https://www.akamai.com/us/en/multimedia/documents/product-brief/prolexic-routed-product-brief.pdf
https://doi.org/10.23919/TMA.2017.8002905
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

AnyOpt: Predicting and Optimizing IP Anycast Performance SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

the announcement from𝐴. Using the first statement of Lemma 1, we

conclude that that all links in 𝜋 are non-empty in 𝐸 (𝑆 ′). Consider
a path 𝜋 ′ of B that meets 𝜋 at some router 𝑅. Since the announce-

ment in 𝜋 won at router 𝑅 over the announcement in 𝜋 ′, the same

must happen in 𝐸 (𝑆 ′), since we assume that the selection policy at

𝑅 is oblivous to the actual source of the announcements on either

path. Thus, 𝐵 cannot win using path 𝜋 ′. Likewise, using the second
statement of Lemma 1, 𝐵 cannot be propagated on a potential path

in 𝐸 (𝑆 ′) since it was not propogated on that path in 𝐸 (𝑆). Thus, 𝐵
cannot win using a potential path 𝜋 ′′, Since 𝐵 cannot win on a path

or a potential path in 𝐸 (𝑆 ′), we conclude that 𝐵 cannot win in 𝐸 (𝑆 ′)
and is hence a loser. □

Theorem A.1. In the local preference model, the following hold. (i)
Pairwise site comparisons are always consistent with a total ordering,
i.e., no cycles are formed. (ii) The total ordering predicts the winner for
any subset of sites.

Proof. First,we showtheexistenceof a compatible total ordering

by showing that a cycle cannot exist. For contradiction, suppose a

cycle exists such that𝐴1 <𝐴2 < . . . <𝐴𝑘 and𝐴𝑘 <𝐴1. Using the pair-

wise comparison𝐴1 <𝐴2 and invoking Lemma 2, we know that𝐴2

is a loser when all sites in 𝑆 ′= {𝐴1,𝐴2,...,𝐴𝑘 } are turned on. Likewise,
we can show that𝐴𝑖 ,1≤ 𝑖 ≤𝑘 , are losers in𝐸 (𝑆 ′). But this is not possi-
ble as there has to be a winner in 𝐸 (𝑆 ′). Hence there can be no cycle.

To show that the total ordering always predicts the winner for

any set of sites, consider any set 𝑆 ′ = (𝐴1, 𝐴2, ... , 𝐴𝑘) such that

𝐴1<𝐴2<...<𝐴𝑘 according to the total ordering. Note that we know

that𝐴𝑖<𝐴𝑖+1 through pairwise comparisons, since all pairwise com-

parisons were performed. Using Lemma 1, we can show that when

𝑆 ′ = (𝐴1,𝐴2, ...,𝐴𝑘) are turned on, 𝐴2, ...,𝐴𝑘 must be losers. So 𝐴1

must be the winner in 𝐸 (𝑆 ′), as one winner should exist. □

A.2 Shortest-PathModel
The local preferencemodel of Section A.1 assumes a total preference

order among incoming links, but in practice some incoming links

may be equally preferred. Furthermore, the local preference model

does not capture the use of other information such as AS path length

to differentiate among paths. In an attempt to capture the impact of

AS path length in the route selection process, we define the shortest

path model. In this model, each router considers path length first

and then breaks ties based on neighbor id. The model is consistent

with Gao-Rexford policy routing when, e.g., all of the paths received

at a node fall into the same class (e.g., all are from providers), which

occurs if all sites peer only with tier-1 networks.

Lemma 3. In the shortest path model, let𝐴 and 𝐵 be two anycast
sites. When𝐴 and 𝐵 are compared pairwise, let𝐴 be the “winner” and
𝐵 be the “loser”. When additional sites are turned on, 𝐵 will continue
to be a “loser”.

Proof. The proof is similar to Lemma 2, but we make a slightly

different argument. First, we observe that Lemma 1 still holds, since

the shortest-path model is Gao-Rexford compliant. Statement 1 of

this lemma states that if a link is non-empty in event 𝐸 (𝑆), then
it is non-empty in event 𝐸 (𝑆 ′), when 𝑆 ⊂ 𝑆 ′. In the shortest path

model, we can make an additional claim that the path length of the

announcement sent over the link in 𝐸 (𝑆 ′) is at most the path length

of the announcement sent over that link in 𝐸 (𝑆), because the routers
choose the announcement with the shortest path length.

Now, consider a pairwise comparison of sites 𝑆 = {𝐴,𝐵} with a

winning path 𝜋 from𝐴 that was compared to paths 𝜋 ′ of 𝐵 during

the pairwise comparison, and additional paths 𝜋 ′′ from 𝐵 that were

not compared to 𝜋 as shown in Figure 8. Suppose we now turn on

more sites 𝑆 ′ such that 𝑆 ⊂𝑆 ′. Let 𝑅 be a router where path 𝜋 and a

path 𝜋 ′ meet. 𝐵 cannot win using a path 𝜋 ′ in event 𝐸 (𝑆 ′) since it
lost to𝐴 on path 𝜋 in event 𝐸 (𝑆) and the announcement entering

𝑅 in 𝜋 in event 𝐸 (𝑆 ′) has path length smaller or equal to the path

length of the announcement on that link in 𝐸 (𝑆). Note that if both
paths have the same length, tie breaking according to router id will

continue to prefer 𝜋 . Thus, 𝐵 cannot win using a path 𝜋 ′. Likewise,
𝐵 cannot win using an additional path 𝜋 ′′ since, by statement 2 of

Lemma 1, these paths cannot appear at 𝜋 whenmore sites are turned

on. Thus, 𝐵 cannot win in 𝐸 (𝑆 ′) and is hence a loser. □

Theorem A.2. In the shortest path model, the following hold. (i)
Pairwise site comparisons are always consistent with a total ordering,
i.e., no cycles are formed. (ii) The total ordering predicts the winner for
any subset of sites.

Proof. The proof invokes Lemma 3 and is identical to the proof

of Theorem A.1. □

B The OptimizationModel
We formally introduce the SPLPOoptimizationmodel and showhow

we can extend it to meet different practical constraints. Let 𝑆 denote

the set of available anycast sites and 𝑠𝑖 denote a site in this set. We

denote the set of hosts as 𝐻 and use ℎ𝑘 to denote a host in 𝐻 . We

define a preference order operator for each host ℎ𝑘 over the set of

anycast sites 𝑆 . If in the pairwise experiment, the hostℎ𝑘 prefers the

site 𝑠𝑖 to 𝑠 𝑗 , we denote it as 𝑠𝑖 ≻ℎ𝑘 𝑠 𝑗 , where ≻ℎ𝑘 is the preference

order operator. Let 𝑟𝑡𝑡 (ℎ𝑘 ,𝑠𝑖) denote the round trip latency from a

host ℎ𝑘 to a site 𝑠𝑖 . We use the boolean variable 𝑥ℎ𝑘 ,𝑠𝑖 to denote a

client’s catchment.When a client’s catchment site is 𝑠𝑖 ,𝑥ℎ𝑘 ,𝑠𝑖 =1 and

vice versa. Similarly, we use a boolean variable𝑦𝑖 to denote whether

a network operator enables a site 𝑠𝑖 to announce an anycast prefix:

𝑦𝑠𝑖 =1means site 𝑠𝑖 is enabled and vice versa.

We now can formulate the anycast performance optimization

problem as the following problem:

𝑚𝑖𝑛

|𝐻 |∑
𝑘=1

|𝑆 |∑
𝑖=1

𝑟𝑡𝑡ℎ𝑘 ,𝑠𝑖 ·𝑥ℎ𝑘 ,𝑠𝑖 (1)

|𝑆 |∑
𝑖=1

𝑥ℎ𝑘 ,𝑠𝑖 =1,𝑘 =1,2,...,|𝐻 | (2)

0≤𝑥ℎ𝑘 ,𝑠𝑖 ≤𝑦𝑠𝑖 ,𝑘 =1,2,...,|𝐻 |,𝑖 =1,2,...,|𝑆 | (3)

𝑥ℎ𝑘 ,𝑠𝑖 =0 𝑜𝑟 1,ℎ𝑘 =1,2,...,|𝐻 |, 𝑖 =1,2,...,|𝑆 | (4)

𝑦𝑠𝑖 =0 𝑜𝑟 1,𝑖 =1,2,...,|𝑆 | (5)∑
𝑠𝑖 ≻ℎ𝑘

𝑠 𝑗

𝑥ℎ𝑘 ,𝑠𝑖 , ≥𝑦𝑠 𝑗 (6)

Equation (3) specifies that a hostℎ cannot choose a site 𝑠𝑖 if it is

not enabled. Equation (6) ensures that a client chooses is its most

preferred site among all enabled sites. We can extend this model in

461

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Zhang, et al.

several ways. For instance, we can weigh each host’s RTT with its

workload to minimize the workload-weighted average latency. We

can also add a load constraint at each site to balance the workloads

amongmultiple sites. That is, if 𝐿𝑠𝑖 denotes the maximum load a site

𝑠𝑖 can absorb and 𝑙 (ℎ) represents the load from each host, we can

add the following contraint to the above formulation:

|𝐻 |∑
𝑘=1

𝑙 (ℎ𝑘) ·𝑥ℎ𝑘 ,𝑖 ≤𝐿𝑠𝑖 (7)

B.1 Reduction of Dominating Set to SPLPO
We now provide a reduction from the NP-hard problem Dominating

Set to SPLPO. The reduction implies not only that SPLPO is NP-hard,

but that evenapproximating theminimumcost for SPLPO isNP-hard.

Theorem B.1. Given an instance of the Dominating Set problem
consisting of a graph𝐺 = (𝑉 ,𝐸) and an integer 𝐾 , in linear time it is
possible to generate an instance of the SPLPO problem such that if there
exists a dominating set of size𝐾 for𝐺 , then there is a zero cost solution
to the SPLPO instance using𝐾+1 sites, but if there is no dominating
set of size𝐾 , then the cost of any solution to the SPLPO instance using
𝐾+1 sites is infinite.

Proof. Given a graph𝐺 = (𝑉 ,𝐸), we create an instance of SPLPO
as follows. Make each vertex 𝑣 a client as well as a site. Call the client

𝑐𝑣 , and site 𝑠𝑣 , with the distance between 𝑐𝑣 and 𝑠𝑣 equal to zero.

Infinitely far away, create a single site 𝑠∗ with its own client 𝑐∗ at
distance zero. If vertex 𝑣 has neighbors 𝑁 (𝑣), in SPLPO, 𝑐𝑣 prefers
𝑠𝑣 , then 𝑠𝑤 for𝑤 ∈ 𝑁 (𝑣) in some order, then 𝑠∗, and then the rest

of the sites in some order. Client 𝑐∗ prefers 𝑠∗ first. If the minimum

dominating set has size𝐾 , then a zero cost solution to SPLPOmust

use𝐾+1 sites. Any solutionwith distance cost zeromust open 𝑠∗ and
adominating set of𝐺 . This is because for𝑐∗ tohavedistance cost zero,
𝑠∗ must be opened. But once 𝑠∗ is opened, for each 𝑣 , one of 𝑠𝑣 or 𝑠𝑤
for𝑤 ∈𝑁 (𝑣)must be opened, for otherwise 𝑐𝑣 will map to 𝑠∗ and pay
infinite cost. Therefore, if we set the number of sites for SPLPO to𝐾+
1, determining if theoptimal cost is zeroor infinity is exactly the same

problemasdeterminingwhether𝐺 hasadominatingsetof size𝐾 . □

462

	Abstract
	1 Introduction
	2 Background
	2.1 Architecture of an Anycast Network
	2.2 Motivating Examples
	2.3 Anycast Configuration

	3 Overview
	3.1 Anycast Testbed
	3.2 Choosing Ping Targets
	3.3 Pairwise Preference Discovery
	3.4 Prediction and Optimization
	3.5 Practical Challenges

	4 Design
	4.1 Sufficient Conditions for Total Orders
	4.2 Practical BGP Implementation Issues
	4.3 Two-level Preference Discovery
	4.4 Incorporating Peers
	4.5 Putting it Together

	5 Performance Evaluation
	5.1 Pairwise Preference Discovery
	5.2 Catchment Prediction
	5.3 Performance Optimization
	5.4 Incorporating Peering Links

	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	9 ACKNOWLEDGMENTS
	References
	A Using pairwise measurements to predict client preference
	A.1 Local Preference Model
	A.2 Shortest-Path Model

	B The Optimization Model
	B.1 Reduction of Dominating Set to SPLPO

