Web-QoS2: Web-browsing Quickly and of Course Safely, Too
Zhenyu Zhou and Theophilus Benson
Department of Computer Science, Duke University

Motivation

- HTTPS has sky-rocket
 Adopted everywhere because the increasing concern of network security and privacy.
- But blindly
 All Objects are retrieved via HTTPS. HTTPS handshake can account for over 42% of data exchanged.
- With harmful consequences
 HTTPS prevents network functions, e.g. caches, from inspecting packets and optimizing end-user performance.

 Conclusion: The user experience can be hurt seriously by adopting HTTPS everywhere. It may introduce long latency, poor performance or even loss of functionality.

Challenges

- Short loading time and low overhead.
- Security is not compromised.

 Goal: Achieve quick and secure page load.

Solution

Key observations:
- Not everything needs to be encrypted.
- The data that indeed need to be encrypted may NOT need to be cached.
- HTTPS connections are not well utilized and may be harmful.

 Idea: Use HTTP for as many objects as possible.

Classify the Web Content:
- Public content, can be sent over HTTP.
- Private content, must be sent over HTTPS.

Employ checksums to prevent tampering of data:
- Checksum prevents Man in the Middle Attacks compromising the unsecure data.
- Send checksums over HTTPS channel.

 Key insight: Checksum are much smaller than data, sending checksum over HTTPS incurs minimal costs.

QoS2 Architecture

Web Server

- Tags content as either private or public
- Calculates and maintains a checksum for each content that is tagged as public
- Maintains two connections with every client
 A secure connection (over HTTPS) and an unsecure one (over HTTP). The server uses the secure connection to transfer the checksums. This ensures that the checksums are not tampered with.

Client Side

A QoS2 enhanced browser is similar to a traditional browser except in the following way:
- Uses the checksum to verify the integrity of unencrypted data

Server Side

A QoS2 web-server is similar to a traditional web server except in the following ways:
- Tags content as either private or public
- Tags determine which content is sent over HTTP or HTTPS.
- Calculates and maintains a checksum for each content that is tagged as public
- Checksums enable verification of an object’s integrity.
- Maintains two connections with every client
 A secure connection (over HTTPS) and an unsecure one (over HTTP). The server uses the secure connection to transfer the checksums.

Evaluation

Performance

Experiment Setup:
We compare the load time for varying latencies to the origin server and potential proxies.
Latencies follow distribution from Pings to Alexa Top 100 servers.

We make the following observations:

A 30% performance improvement in low latency networks and potentially as much as 70% in high latency networks.
Improvements are a function of both the dependencies between objects and the size of the public objects.