Speeding Up TCP with Selective Loss Prevention

Zhenyu Zhou*, Xiaowei Yang

1s = ?

Page Load Time Matters

$$1s = $1B$$

The "Narrow Waist"

The "Narrow Waist"

Improving TCP Latency

DCTCP [SIGCOMM'10]

SPDY [Chromium Projects]

- QUIC [SIGCOMM'17]
- NDP [SIGCOMM'17]

• • •

Improving TCP Latency

- Previous work on congestion control
 - Fully utilize available bandwidth

- An orthogonal view
 - What is the main contributor of TCP latency?

Improving TCP Latency

- Previous work on congestion control
 - Fully utilize available bandwidth

- An orthogonal view
 - What is the main contributor of TCP latency?

Timeout

TCP Timeout

- Classic alleviation: Fast retransmission
 - Not always triggered
 - Our observation: timeouts account for ~10.1% of retransmission events

- Takeaway
 - TCP timeout still significantly contributes to TCP latency

Goal

Improving TCP latency by reducing TCP timeout events

Selective Loss Prevention

- Our solution: Selective Loss Prevention (SLP)
 - Predicate "important" packets more likely to cause timeouts
 - Aggressively duplicate these "important" packets

- Why selective duplication?
 - <u>Automatic Repeat Request vs. Forward Error Correction</u>
 - TCP applies ARQ (retransmission)
 - Duplication is the simplest form of FEC
 - Applying FEC to all packets is ineffective (analysis in paper)

Challenges

How to determine the "important" packets?

How to prevent redundant packets from congesting the network?

Challenges

- How to determine the "important" packets?
 - Analyze packet traces from DCN and Internet

- How to prevent redundant packets from congesting the network?
 - Co-design congestion control algorithm with duplicate packets

- Position analysis
 - Fraction of timeout-based retransmission for packets lost at different positions in a TCP connection

(a) Forward half from client to server (b) Reverse half from client to server

(c) Foward half from server to client (d) Reverse half from server to client

- Position analysis
 - Fraction of timeout-based retransmission for packets lost at different positions in a TCP connection

- Takeaway
 - Head and tail losses are more likely to cause timeouts
 - Especially, more than 70% of TCP SYN packet losses caused a timeout

Flag Analysis

Fraction of timeout-based retransmission for packets lost with

different TCP flags

- Flag Analysis
 - Fraction of timeout-based retransmission for packets lost with different TCP flags

- Takeaway
 - Packets near the beginning or end of a connection, and packets carrying PSH flag are more likely to cause timeouts

Incorporate SLP into TCP

Incorporate SLP into TCP

Formal analysis can be found in the paper

Preliminary Evaluation

File completion time

Thanks for your attention!

Questions?